1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
2021-11-02 20:28:26 -07:00

556 lines
13 KiB
Verilog

/*
Copyright (c) 2020-2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA top-level module
*/
module fpga (
/*
* Clock: 125MHz LVDS
* Reset: Push button, active low
*/
input wire clk_125mhz_p,
input wire clk_125mhz_n,
input wire reset,
/*
* GPIO
*/
input wire btnu,
input wire btnl,
input wire btnd,
input wire btnr,
input wire btnc,
input wire [7:0] sw,
output wire [7:0] led,
/*
* UART: 115200 bps, 8N1
*/
input wire uart_rxd,
output wire uart_txd,
input wire uart_rts,
output wire uart_cts,
/*
* Ethernet: SFP+
*/
input wire sfp0_rx_p,
input wire sfp0_rx_n,
output wire sfp0_tx_p,
output wire sfp0_tx_n,
input wire sfp1_rx_p,
input wire sfp1_rx_n,
output wire sfp1_tx_p,
output wire sfp1_tx_n,
input wire sfp2_rx_p,
input wire sfp2_rx_n,
output wire sfp2_tx_p,
output wire sfp2_tx_n,
input wire sfp3_rx_p,
input wire sfp3_rx_n,
output wire sfp3_tx_p,
output wire sfp3_tx_n,
input wire sfp_mgt_refclk_0_p,
input wire sfp_mgt_refclk_0_n,
output wire sfp0_tx_disable_b,
output wire sfp1_tx_disable_b,
output wire sfp2_tx_disable_b,
output wire sfp3_tx_disable_b
);
// Clock and reset
wire clk_125mhz_ibufg;
wire clk_125mhz_bufg;
// Internal 125 MHz clock
wire clk_125mhz_mmcm_out;
wire clk_125mhz_int;
wire rst_125mhz_int;
// Internal 156.25 MHz clock
wire clk_156mhz_int;
wire rst_156mhz_int;
wire mmcm_rst = reset;
wire mmcm_locked;
wire mmcm_clkfb;
IBUFGDS #(
.DIFF_TERM("FALSE"),
.IBUF_LOW_PWR("FALSE")
)
clk_125mhz_ibufg_inst (
.O (clk_125mhz_ibufg),
.I (clk_125mhz_p),
.IB (clk_125mhz_n)
);
BUFG
clk_125mhz_bufg_in_inst (
.I(clk_125mhz_ibufg),
.O(clk_125mhz_bufg)
);
// MMCM instance
// 125 MHz in, 125 MHz out
// PFD range: 10 MHz to 500 MHz
// VCO range: 800 MHz to 1600 MHz
// M = 8, D = 1 sets Fvco = 1000 MHz (in range)
// Divide by 8 to get output frequency of 125 MHz
MMCME4_BASE #(
.BANDWIDTH("OPTIMIZED"),
.CLKOUT0_DIVIDE_F(8),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
.CLKOUT1_DIVIDE(1),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
.CLKFBOUT_MULT_F(8),
.CLKFBOUT_PHASE(0),
.DIVCLK_DIVIDE(1),
.REF_JITTER1(0.010),
.CLKIN1_PERIOD(8.0),
.STARTUP_WAIT("FALSE"),
.CLKOUT4_CASCADE("FALSE")
)
clk_mmcm_inst (
.CLKIN1(clk_125mhz_bufg),
.CLKFBIN(mmcm_clkfb),
.RST(mmcm_rst),
.PWRDWN(1'b0),
.CLKOUT0(clk_125mhz_mmcm_out),
.CLKOUT0B(),
.CLKOUT1(),
.CLKOUT1B(),
.CLKOUT2(),
.CLKOUT2B(),
.CLKOUT3(),
.CLKOUT3B(),
.CLKOUT4(),
.CLKOUT5(),
.CLKOUT6(),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
.LOCKED(mmcm_locked)
);
BUFG
clk_125mhz_bufg_inst (
.I(clk_125mhz_mmcm_out),
.O(clk_125mhz_int)
);
sync_reset #(
.N(4)
)
sync_reset_125mhz_inst (
.clk(clk_125mhz_int),
.rst(~mmcm_locked),
.out(rst_125mhz_int)
);
// GPIO
wire btnu_int;
wire btnl_int;
wire btnd_int;
wire btnr_int;
wire btnc_int;
wire [7:0] sw_int;
debounce_switch #(
.WIDTH(9),
.N(8),
.RATE(156000)
)
debounce_switch_inst (
.clk(clk_156mhz_int),
.rst(rst_156mhz_int),
.in({btnu,
btnl,
btnd,
btnr,
btnc,
sw}),
.out({btnu_int,
btnl_int,
btnd_int,
btnr_int,
btnc_int,
sw_int})
);
wire uart_rxd_int;
wire uart_rts_int;
sync_signal #(
.WIDTH(2),
.N(2)
)
sync_signal_inst (
.clk(clk_156mhz_int),
.in({uart_rxd, uart_rts}),
.out({uart_rxd_int, uart_rts_int})
);
// XGMII 10G PHY
assign sfp0_tx_disable_b = 1'b1;
assign sfp1_tx_disable_b = 1'b1;
assign sfp2_tx_disable_b = 1'b1;
assign sfp3_tx_disable_b = 1'b1;
wire sfp0_tx_clk_int;
wire sfp0_tx_rst_int;
wire [63:0] sfp0_txd_int;
wire [7:0] sfp0_txc_int;
wire sfp0_rx_clk_int;
wire sfp0_rx_rst_int;
wire [63:0] sfp0_rxd_int;
wire [7:0] sfp0_rxc_int;
wire sfp1_tx_clk_int;
wire sfp1_tx_rst_int;
wire [63:0] sfp1_txd_int;
wire [7:0] sfp1_txc_int;
wire sfp1_rx_clk_int;
wire sfp1_rx_rst_int;
wire [63:0] sfp1_rxd_int;
wire [7:0] sfp1_rxc_int;
wire sfp2_tx_clk_int;
wire sfp2_tx_rst_int;
wire [63:0] sfp2_txd_int;
wire [7:0] sfp2_txc_int;
wire sfp2_rx_clk_int;
wire sfp2_rx_rst_int;
wire [63:0] sfp2_rxd_int;
wire [7:0] sfp2_rxc_int;
wire sfp3_tx_clk_int;
wire sfp3_tx_rst_int;
wire [63:0] sfp3_txd_int;
wire [7:0] sfp3_txc_int;
wire sfp3_rx_clk_int;
wire sfp3_rx_rst_int;
wire [63:0] sfp3_rxd_int;
wire [7:0] sfp3_rxc_int;
assign clk_156mhz_int = sfp0_tx_clk_int;
assign rst_156mhz_int = sfp0_tx_rst_int;
wire sfp0_rx_block_lock;
wire sfp1_rx_block_lock;
wire sfp2_rx_block_lock;
wire sfp3_rx_block_lock;
wire sfp_mgt_refclk_0;
IBUFDS_GTE4 ibufds_gte4_sfp_mgt_refclk_0_inst (
.I (sfp_mgt_refclk_0_p),
.IB (sfp_mgt_refclk_0_n),
.CEB (1'b0),
.O (sfp_mgt_refclk_0),
.ODIV2 ()
);
wire sfp_qpll0lock;
wire sfp_qpll0outclk;
wire sfp_qpll0outrefclk;
eth_xcvr_phy_wrapper #(
.HAS_COMMON(1)
)
sfp0_phy_inst (
.xcvr_ctrl_clk(clk_125mhz_int),
.xcvr_ctrl_rst(rst_125mhz_int),
// Common
.xcvr_gtpowergood_out(),
// PLL out
.xcvr_gtrefclk00_in(sfp_mgt_refclk_0),
.xcvr_qpll0lock_out(sfp_qpll0lock),
.xcvr_qpll0outclk_out(sfp_qpll0outclk),
.xcvr_qpll0outrefclk_out(sfp_qpll0outrefclk),
// PLL in
.xcvr_qpll0lock_in(1'b0),
.xcvr_qpll0reset_out(),
.xcvr_qpll0clk_in(1'b0),
.xcvr_qpll0refclk_in(1'b0),
// Serial data
.xcvr_txp(sfp0_tx_p),
.xcvr_txn(sfp0_tx_n),
.xcvr_rxp(sfp0_rx_p),
.xcvr_rxn(sfp0_rx_n),
// PHY connections
.phy_tx_clk(sfp0_tx_clk_int),
.phy_tx_rst(sfp0_tx_rst_int),
.phy_xgmii_txd(sfp0_txd_int),
.phy_xgmii_txc(sfp0_txc_int),
.phy_rx_clk(sfp0_rx_clk_int),
.phy_rx_rst(sfp0_rx_rst_int),
.phy_xgmii_rxd(sfp0_rxd_int),
.phy_xgmii_rxc(sfp0_rxc_int),
.phy_tx_bad_block(),
.phy_rx_error_count(),
.phy_rx_bad_block(),
.phy_rx_sequence_error(),
.phy_rx_block_lock(sfp0_rx_block_lock),
.phy_rx_high_ber(),
.phy_tx_prbs31_enable(),
.phy_rx_prbs31_enable()
);
eth_xcvr_phy_wrapper #(
.HAS_COMMON(0)
)
sfp1_phy_inst (
.xcvr_ctrl_clk(clk_125mhz_int),
.xcvr_ctrl_rst(rst_125mhz_int),
// Common
.xcvr_gtpowergood_out(),
// PLL out
.xcvr_gtrefclk00_in(1'b0),
.xcvr_qpll0lock_out(),
.xcvr_qpll0outclk_out(),
.xcvr_qpll0outrefclk_out(),
// PLL in
.xcvr_qpll0lock_in(sfp_qpll0lock),
.xcvr_qpll0reset_out(),
.xcvr_qpll0clk_in(sfp_qpll0outclk),
.xcvr_qpll0refclk_in(sfp_qpll0outrefclk),
// Serial data
.xcvr_txp(sfp1_tx_p),
.xcvr_txn(sfp1_tx_n),
.xcvr_rxp(sfp1_rx_p),
.xcvr_rxn(sfp1_rx_n),
// PHY connections
.phy_tx_clk(sfp1_tx_clk_int),
.phy_tx_rst(sfp1_tx_rst_int),
.phy_xgmii_txd(sfp1_txd_int),
.phy_xgmii_txc(sfp1_txc_int),
.phy_rx_clk(sfp1_rx_clk_int),
.phy_rx_rst(sfp1_rx_rst_int),
.phy_xgmii_rxd(sfp1_rxd_int),
.phy_xgmii_rxc(sfp1_rxc_int),
.phy_tx_bad_block(),
.phy_rx_error_count(),
.phy_rx_bad_block(),
.phy_rx_sequence_error(),
.phy_rx_block_lock(sfp1_rx_block_lock),
.phy_rx_high_ber(),
.phy_tx_prbs31_enable(),
.phy_rx_prbs31_enable()
);
eth_xcvr_phy_wrapper #(
.HAS_COMMON(0)
)
sfp2_phy_inst (
.xcvr_ctrl_clk(clk_125mhz_int),
.xcvr_ctrl_rst(rst_125mhz_int),
// Common
.xcvr_gtpowergood_out(),
// PLL out
.xcvr_gtrefclk00_in(1'b0),
.xcvr_qpll0lock_out(),
.xcvr_qpll0outclk_out(),
.xcvr_qpll0outrefclk_out(),
// PLL in
.xcvr_qpll0lock_in(sfp_qpll0lock),
.xcvr_qpll0reset_out(),
.xcvr_qpll0clk_in(sfp_qpll0outclk),
.xcvr_qpll0refclk_in(sfp_qpll0outrefclk),
// Serial data
.xcvr_txp(sfp2_tx_p),
.xcvr_txn(sfp2_tx_n),
.xcvr_rxp(sfp2_rx_p),
.xcvr_rxn(sfp2_rx_n),
// PHY connections
.phy_tx_clk(sfp2_tx_clk_int),
.phy_tx_rst(sfp2_tx_rst_int),
.phy_xgmii_txd(sfp2_txd_int),
.phy_xgmii_txc(sfp2_txc_int),
.phy_rx_clk(sfp2_rx_clk_int),
.phy_rx_rst(sfp2_rx_rst_int),
.phy_xgmii_rxd(sfp2_rxd_int),
.phy_xgmii_rxc(sfp2_rxc_int),
.phy_tx_bad_block(),
.phy_rx_error_count(),
.phy_rx_bad_block(),
.phy_rx_sequence_error(),
.phy_rx_block_lock(sfp2_rx_block_lock),
.phy_rx_high_ber(),
.phy_tx_prbs31_enable(),
.phy_rx_prbs31_enable()
);
eth_xcvr_phy_wrapper #(
.HAS_COMMON(0)
)
sfp3_phy_inst (
.xcvr_ctrl_clk(clk_125mhz_int),
.xcvr_ctrl_rst(rst_125mhz_int),
// Common
.xcvr_gtpowergood_out(),
// PLL out
.xcvr_gtrefclk00_in(1'b0),
.xcvr_qpll0lock_out(),
.xcvr_qpll0outclk_out(),
.xcvr_qpll0outrefclk_out(),
// PLL in
.xcvr_qpll0lock_in(sfp_qpll0lock),
.xcvr_qpll0reset_out(),
.xcvr_qpll0clk_in(sfp_qpll0outclk),
.xcvr_qpll0refclk_in(sfp_qpll0outrefclk),
// Serial data
.xcvr_txp(sfp3_tx_p),
.xcvr_txn(sfp3_tx_n),
.xcvr_rxp(sfp3_rx_p),
.xcvr_rxn(sfp3_rx_n),
// PHY connections
.phy_tx_clk(sfp3_tx_clk_int),
.phy_tx_rst(sfp3_tx_rst_int),
.phy_xgmii_txd(sfp3_txd_int),
.phy_xgmii_txc(sfp3_txc_int),
.phy_rx_clk(sfp3_rx_clk_int),
.phy_rx_rst(sfp3_rx_rst_int),
.phy_xgmii_rxd(sfp3_rxd_int),
.phy_xgmii_rxc(sfp3_rxc_int),
.phy_tx_bad_block(),
.phy_rx_error_count(),
.phy_rx_bad_block(),
.phy_rx_sequence_error(),
.phy_rx_block_lock(sfp3_rx_block_lock),
.phy_rx_high_ber(),
.phy_tx_prbs31_enable(),
.phy_rx_prbs31_enable()
);
fpga_core
core_inst (
/*
* Clock: 156.25 MHz
* Synchronous reset
*/
.clk(clk_156mhz_int),
.rst(rst_156mhz_int),
/*
* GPIO
*/
.btnu(btnu_int),
.btnl(btnl_int),
.btnd(btnd_int),
.btnr(btnr_int),
.btnc(btnc_int),
.sw(sw_int),
.led(led),
/*
* UART: 115200 bps, 8N1
*/
.uart_rxd(uart_rxd_int),
.uart_txd(uart_txd),
.uart_rts(uart_rts_int),
.uart_cts(uart_cts),
/*
* Ethernet: SFP+
*/
.sfp0_tx_clk(sfp0_tx_clk_int),
.sfp0_tx_rst(sfp0_tx_rst_int),
.sfp0_txd(sfp0_txd_int),
.sfp0_txc(sfp0_txc_int),
.sfp0_rx_clk(sfp0_rx_clk_int),
.sfp0_rx_rst(sfp0_rx_rst_int),
.sfp0_rxd(sfp0_rxd_int),
.sfp0_rxc(sfp0_rxc_int),
.sfp1_tx_clk(sfp1_tx_clk_int),
.sfp1_tx_rst(sfp1_tx_rst_int),
.sfp1_txd(sfp1_txd_int),
.sfp1_txc(sfp1_txc_int),
.sfp1_rx_clk(sfp1_rx_clk_int),
.sfp1_rx_rst(sfp1_rx_rst_int),
.sfp1_rxd(sfp1_rxd_int),
.sfp1_rxc(sfp1_rxc_int),
.sfp2_tx_clk(sfp2_tx_clk_int),
.sfp2_tx_rst(sfp2_tx_rst_int),
.sfp2_txd(sfp2_txd_int),
.sfp2_txc(sfp2_txc_int),
.sfp2_rx_clk(sfp2_rx_clk_int),
.sfp2_rx_rst(sfp2_rx_rst_int),
.sfp2_rxd(sfp2_rxd_int),
.sfp2_rxc(sfp2_rxc_int),
.sfp3_tx_clk(sfp3_tx_clk_int),
.sfp3_tx_rst(sfp3_tx_rst_int),
.sfp3_txd(sfp3_txd_int),
.sfp3_txc(sfp3_txc_int),
.sfp3_rx_clk(sfp3_rx_clk_int),
.sfp3_rx_rst(sfp3_rx_rst_int),
.sfp3_rxd(sfp3_rxd_int),
.sfp3_rxc(sfp3_rxc_int)
);
endmodule
`resetall