1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axi_ram_rd_if.v
2019-07-25 16:33:27 -07:00

271 lines
9.8 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 RAM read interface
*/
module axi_ram_rd_if #
(
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 16,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate aruser signal
parameter ARUSER_ENABLE = 0,
// Width of aruser signal
parameter ARUSER_WIDTH = 1,
// Propagate ruser signal
parameter RUSER_ENABLE = 0,
// Width of ruser signal
parameter RUSER_WIDTH = 1,
// Extra pipeline register on output
parameter PIPELINE_OUTPUT = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_arid,
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
input wire [7:0] s_axi_arlen,
input wire [2:0] s_axi_arsize,
input wire [1:0] s_axi_arburst,
input wire s_axi_arlock,
input wire [3:0] s_axi_arcache,
input wire [2:0] s_axi_arprot,
input wire [3:0] s_axi_arqos,
input wire [3:0] s_axi_arregion,
input wire [ARUSER_WIDTH-1:0] s_axi_aruser,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [ID_WIDTH-1:0] s_axi_rid,
output wire [DATA_WIDTH-1:0] s_axi_rdata,
output wire [1:0] s_axi_rresp,
output wire s_axi_rlast,
output wire [RUSER_WIDTH-1:0] s_axi_ruser,
output wire s_axi_rvalid,
input wire s_axi_rready,
/*
* RAM interface
*/
output wire [ID_WIDTH-1:0] ram_rd_cmd_id,
output wire [ADDR_WIDTH-1:0] ram_rd_cmd_addr,
output wire ram_rd_cmd_lock,
output wire [3:0] ram_rd_cmd_cache,
output wire [2:0] ram_rd_cmd_prot,
output wire [3:0] ram_rd_cmd_qos,
output wire [3:0] ram_rd_cmd_region,
output wire [ARUSER_WIDTH-1:0] ram_rd_cmd_auser,
output wire ram_rd_cmd_en,
output wire ram_rd_cmd_last,
input wire ram_rd_cmd_ready,
input wire [ID_WIDTH-1:0] ram_rd_resp_id,
input wire [DATA_WIDTH-1:0] ram_rd_resp_data,
input wire ram_rd_resp_last,
input wire [RUSER_WIDTH-1:0] ram_rd_resp_user,
input wire ram_rd_resp_valid,
output wire ram_rd_resp_ready
);
parameter VALID_ADDR_WIDTH = ADDR_WIDTH - $clog2(STRB_WIDTH);
parameter WORD_WIDTH = STRB_WIDTH;
parameter WORD_SIZE = DATA_WIDTH/WORD_WIDTH;
// bus width assertions
initial begin
if (WORD_SIZE * STRB_WIDTH != DATA_WIDTH) begin
$error("Error: AXI data width not evenly divisble (instance %m)");
$finish;
end
if (2**$clog2(WORD_WIDTH) != WORD_WIDTH) begin
$error("Error: AXI word width must be even power of two (instance %m)");
$finish;
end
end
localparam [0:0]
STATE_IDLE = 1'd0,
STATE_BURST = 1'd1;
reg [0:0] state_reg = STATE_IDLE, state_next;
reg [ID_WIDTH-1:0] read_id_reg = {ID_WIDTH{1'b0}}, read_id_next;
reg [ADDR_WIDTH-1:0] read_addr_reg = {ADDR_WIDTH{1'b0}}, read_addr_next;
reg read_lock_reg = 1'b0, read_lock_next;
reg [3:0] read_cache_reg = 4'd0, read_cache_next;
reg [2:0] read_prot_reg = 3'd0, read_prot_next;
reg [3:0] read_qos_reg = 4'd0, read_qos_next;
reg [3:0] read_region_reg = 4'd0, read_region_next;
reg [ARUSER_WIDTH-1:0] read_aruser_reg = {ARUSER_WIDTH{1'b0}}, read_aruser_next;
reg read_addr_valid_reg = 1'b0, read_addr_valid_next;
reg read_last_reg = 1'b0, read_last_next;
reg [7:0] read_count_reg = 8'd0, read_count_next;
reg [2:0] read_size_reg = 3'd0, read_size_next;
reg [1:0] read_burst_reg = 2'd0, read_burst_next;
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
reg [ID_WIDTH-1:0] s_axi_rid_pipe_reg = {ID_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] s_axi_rdata_pipe_reg = {DATA_WIDTH{1'b0}};
reg s_axi_rlast_pipe_reg = 1'b0;
reg [RUSER_WIDTH-1:0] s_axi_ruser_pipe_reg = {RUSER_WIDTH{1'b0}};
reg s_axi_rvalid_pipe_reg = 1'b0;
assign s_axi_arready = s_axi_arready_reg;
assign s_axi_rid = PIPELINE_OUTPUT ? s_axi_rid_pipe_reg : ram_rd_resp_id;
assign s_axi_rdata = PIPELINE_OUTPUT ? s_axi_rdata_pipe_reg : ram_rd_resp_data;
assign s_axi_rresp = 2'b00;
assign s_axi_rlast = PIPELINE_OUTPUT ? s_axi_rlast_pipe_reg : ram_rd_resp_last;
assign s_axi_ruser = PIPELINE_OUTPUT ? s_axi_ruser_pipe_reg : ram_rd_resp_user;
assign s_axi_rvalid = PIPELINE_OUTPUT ? s_axi_rvalid_pipe_reg : ram_rd_resp_valid;
assign ram_rd_cmd_id = read_id_reg;
assign ram_rd_cmd_addr = read_addr_reg;
assign ram_rd_cmd_lock = read_lock_reg;
assign ram_rd_cmd_cache = read_cache_reg;
assign ram_rd_cmd_prot = read_prot_reg;
assign ram_rd_cmd_qos = read_qos_reg;
assign ram_rd_cmd_region = read_region_reg;
assign ram_rd_cmd_auser = ARUSER_ENABLE ? read_aruser_reg : {ARUSER_WIDTH{1'b0}};
assign ram_rd_cmd_en = read_addr_valid_reg;
assign ram_rd_cmd_last = read_last_reg;
assign ram_rd_resp_ready = s_axi_rready || (PIPELINE_OUTPUT && !s_axi_rvalid_pipe_reg);
always @* begin
state_next = STATE_IDLE;
read_id_next = read_id_reg;
read_addr_next = read_addr_reg;
read_lock_next = read_lock_reg;
read_cache_next = read_cache_reg;
read_prot_next = read_prot_reg;
read_qos_next = read_qos_reg;
read_region_next = read_region_reg;
read_aruser_next = read_aruser_reg;
read_addr_valid_next = read_addr_valid_reg && !ram_rd_cmd_ready;
read_last_next = read_last_reg;
read_count_next = read_count_reg;
read_size_next = read_size_reg;
read_burst_next = read_burst_reg;
s_axi_arready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
s_axi_arready_next = 1'b1;
if (s_axi_arready && s_axi_arvalid) begin
read_id_next = s_axi_arid;
read_addr_next = s_axi_araddr;
read_lock_next = s_axi_arlock;
read_cache_next = s_axi_arcache;
read_prot_next = s_axi_arprot;
read_qos_next = s_axi_arqos;
read_region_next = s_axi_arregion;
read_aruser_next = s_axi_aruser;
read_count_next = s_axi_arlen;
read_size_next = s_axi_arsize < $clog2(STRB_WIDTH) ? s_axi_arsize : $clog2(STRB_WIDTH);
read_burst_next = s_axi_arburst;
s_axi_arready_next = 1'b0;
read_last_next = read_count_next == 0;
read_addr_valid_next = 1'b1;
state_next = STATE_BURST;
end else begin
state_next = STATE_IDLE;
end
end
STATE_BURST: begin
if (ram_rd_cmd_ready && ram_rd_cmd_en) begin
if (read_burst_reg != 2'b00) begin
read_addr_next = read_addr_reg + (1 << read_size_reg);
end
read_count_next = read_count_reg - 1;
read_last_next = read_count_next == 0;
if (read_count_reg > 0) begin
read_addr_valid_next = 1'b1;
state_next = STATE_BURST;
end else begin
s_axi_arready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_BURST;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
read_addr_valid_reg <= 1'b0;
s_axi_arready_reg <= 1'b0;
s_axi_rvalid_pipe_reg <= 1'b0;
end else begin
state_reg <= state_next;
read_addr_valid_reg <= read_addr_valid_next;
s_axi_arready_reg <= s_axi_arready_next;
if (!s_axi_rvalid_pipe_reg || s_axi_rready) begin
s_axi_rvalid_pipe_reg <= ram_rd_resp_valid;
end
end
read_id_reg <= read_id_next;
read_addr_reg <= read_addr_next;
read_lock_reg <= read_lock_next;
read_cache_reg <= read_cache_next;
read_prot_reg <= read_prot_next;
read_qos_reg <= read_qos_next;
read_region_reg <= read_region_next;
read_aruser_reg <= read_aruser_next;
read_last_reg <= read_last_next;
read_count_reg <= read_count_next;
read_size_reg <= read_size_next;
read_burst_reg <= read_burst_next;
if (!s_axi_rvalid_pipe_reg || s_axi_rready) begin
s_axi_rid_pipe_reg <= ram_rd_resp_id;
s_axi_rdata_pipe_reg <= ram_rd_resp_data;
s_axi_rlast_pipe_reg <= ram_rd_resp_last;
s_axi_ruser_pipe_reg <= ram_rd_resp_user;
end
end
endmodule