1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_async_fifo.v
Alex Forencich 2be72bb758 Refactor pointer handling in FIFOs
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2023-07-26 18:47:43 -07:00

715 lines
26 KiB
Verilog

/*
Copyright (c) 2014-2023 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream asynchronous FIFO
*/
module axis_async_fifo #
(
// FIFO depth in words
// KEEP_WIDTH words per cycle if KEEP_ENABLE set
// Rounded up to nearest power of 2 cycles
parameter DEPTH = 4096,
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8),
// Propagate tlast signal
parameter LAST_ENABLE = 1,
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// number of RAM pipeline registers
parameter RAM_PIPELINE = 1,
// use output FIFO
// When set, the RAM read enable and pipeline clock enables are removed
parameter OUTPUT_FIFO_ENABLE = 0,
// Frame FIFO mode - operate on frames instead of cycles
// When set, m_axis_tvalid will not be deasserted within a frame
// Requires LAST_ENABLE set
parameter FRAME_FIFO = 0,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1,
// Drop frames larger than FIFO
// Requires FRAME_FIFO set
parameter DROP_OVERSIZE_FRAME = FRAME_FIFO,
// Drop frames marked bad
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter DROP_BAD_FRAME = 0,
// Drop incoming frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter DROP_WHEN_FULL = 0
)
(
/*
* AXI input
*/
input wire s_clk,
input wire s_rst,
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
input wire m_clk,
input wire m_rst,
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* Status
*/
output wire s_status_overflow,
output wire s_status_bad_frame,
output wire s_status_good_frame,
output wire m_status_overflow,
output wire m_status_bad_frame,
output wire m_status_good_frame
);
parameter ADDR_WIDTH = (KEEP_ENABLE && KEEP_WIDTH > 1) ? $clog2(DEPTH/KEEP_WIDTH) : $clog2(DEPTH);
parameter OUTPUT_FIFO_ADDR_WIDTH = RAM_PIPELINE < 2 ? 3 : $clog2(RAM_PIPELINE*2+7);
// check configuration
initial begin
if (FRAME_FIFO && !LAST_ENABLE) begin
$error("Error: FRAME_FIFO set requires LAST_ENABLE set (instance %m)");
$finish;
end
if (DROP_OVERSIZE_FRAME && !FRAME_FIFO) begin
$error("Error: DROP_OVERSIZE_FRAME set requires FRAME_FIFO set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin
$error("Error: DROP_BAD_FRAME set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
$finish;
end
if (DROP_WHEN_FULL && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin
$error("Error: DROP_WHEN_FULL set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin
$error("Error: Invalid USER_BAD_FRAME_MASK value (instance %m)");
$finish;
end
end
localparam KEEP_OFFSET = DATA_WIDTH;
localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0);
localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0);
localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0);
localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0);
localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0);
reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_commit_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_sync_commit_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_temp;
reg [ADDR_WIDTH:0] rd_ptr_temp;
(* SHREG_EXTRACT = "NO" *)
reg [ADDR_WIDTH:0] wr_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}};
(* SHREG_EXTRACT = "NO" *)
reg [ADDR_WIDTH:0] wr_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}};
(* SHREG_EXTRACT = "NO" *)
reg [ADDR_WIDTH:0] wr_ptr_commit_sync_reg = {ADDR_WIDTH+1{1'b0}};
(* SHREG_EXTRACT = "NO" *)
reg [ADDR_WIDTH:0] rd_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}};
(* SHREG_EXTRACT = "NO" *)
reg [ADDR_WIDTH:0] rd_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}};
reg wr_ptr_update_valid_reg = 1'b0;
reg wr_ptr_update_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
reg wr_ptr_update_sync1_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
reg wr_ptr_update_sync2_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
reg wr_ptr_update_sync3_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
reg wr_ptr_update_ack_sync1_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
reg wr_ptr_update_ack_sync2_reg = 1'b0;
(* SHREG_EXTRACT = "NO" *)
reg s_rst_sync1_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
reg s_rst_sync2_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
reg s_rst_sync3_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
reg m_rst_sync1_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
reg m_rst_sync2_reg = 1'b1;
(* SHREG_EXTRACT = "NO" *)
reg m_rst_sync3_reg = 1'b1;
(* ramstyle = "no_rw_check" *)
reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg mem_read_data_valid_reg = 1'b0;
(* shreg_extract = "no" *)
reg [WIDTH-1:0] m_axis_pipe_reg[RAM_PIPELINE+1-1:0];
reg [RAM_PIPELINE+1-1:0] m_axis_tvalid_pipe_reg = 0;
// full when first TWO MSBs do NOT match, but rest matches
// (gray code equivalent of first MSB different but rest same)
wire full = wr_ptr_gray_reg == (rd_ptr_gray_sync2_reg ^ {2'b11, {ADDR_WIDTH-1{1'b0}}});
// empty when pointers match exactly
wire empty = FRAME_FIFO ? (rd_ptr_reg == wr_ptr_commit_sync_reg) : (rd_ptr_gray_reg == wr_ptr_gray_sync2_reg);
// overflow within packet
wire full_wr = wr_ptr_reg == (wr_ptr_commit_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}});
// control signals
reg write;
reg read;
reg store_output;
reg s_frame_reg = 1'b0;
reg m_frame_reg = 1'b0;
reg drop_frame_reg = 1'b0;
reg send_frame_reg = 1'b0;
reg overflow_reg = 1'b0;
reg bad_frame_reg = 1'b0;
reg good_frame_reg = 1'b0;
reg m_drop_frame_reg = 1'b0;
reg m_terminate_frame_reg = 1'b0;
reg overflow_sync1_reg = 1'b0;
reg overflow_sync2_reg = 1'b0;
reg overflow_sync3_reg = 1'b0;
reg overflow_sync4_reg = 1'b0;
reg bad_frame_sync1_reg = 1'b0;
reg bad_frame_sync2_reg = 1'b0;
reg bad_frame_sync3_reg = 1'b0;
reg bad_frame_sync4_reg = 1'b0;
reg good_frame_sync1_reg = 1'b0;
reg good_frame_sync2_reg = 1'b0;
reg good_frame_sync3_reg = 1'b0;
reg good_frame_sync4_reg = 1'b0;
assign s_axis_tready = (FRAME_FIFO ? (!full || (full_wr && DROP_OVERSIZE_FRAME) || DROP_WHEN_FULL) : !full) && !s_rst_sync3_reg;
wire [WIDTH-1:0] s_axis;
generate
assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata;
if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep;
if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast;
if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid;
if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest;
if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser;
endgenerate
wire [WIDTH-1:0] m_axis = m_axis_pipe_reg[RAM_PIPELINE+1-1];
wire m_axis_tvalid_pipe = m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1];
wire [DATA_WIDTH-1:0] m_axis_tdata_pipe = m_axis[DATA_WIDTH-1:0];
wire [KEEP_WIDTH-1:0] m_axis_tkeep_pipe = KEEP_ENABLE ? m_axis[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}};
wire m_axis_tlast_pipe = LAST_ENABLE ? m_axis[LAST_OFFSET] | m_terminate_frame_reg : 1'b1;
wire [ID_WIDTH-1:0] m_axis_tid_pipe = ID_ENABLE ? m_axis[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}};
wire [DEST_WIDTH-1:0] m_axis_tdest_pipe = DEST_ENABLE ? m_axis[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}};
wire [USER_WIDTH-1:0] m_axis_tuser_pipe = USER_ENABLE ? (m_terminate_frame_reg ? USER_BAD_FRAME_VALUE : m_axis[USER_OFFSET +: USER_WIDTH]) : {USER_WIDTH{1'b0}};
wire pipe_ready;
assign s_status_overflow = overflow_reg;
assign s_status_bad_frame = bad_frame_reg;
assign s_status_good_frame = good_frame_reg;
assign m_status_overflow = overflow_sync3_reg ^ overflow_sync4_reg;
assign m_status_bad_frame = bad_frame_sync3_reg ^ bad_frame_sync4_reg;
assign m_status_good_frame = good_frame_sync3_reg ^ good_frame_sync4_reg;
// reset synchronization
always @(posedge m_clk or posedge m_rst) begin
if (m_rst) begin
s_rst_sync1_reg <= 1'b1;
end else begin
s_rst_sync1_reg <= 1'b0;
end
end
always @(posedge s_clk) begin
s_rst_sync2_reg <= s_rst_sync1_reg;
s_rst_sync3_reg <= s_rst_sync2_reg;
end
always @(posedge s_clk or posedge s_rst) begin
if (s_rst) begin
m_rst_sync1_reg <= 1'b1;
end else begin
m_rst_sync1_reg <= 1'b0;
end
end
always @(posedge m_clk) begin
m_rst_sync2_reg <= m_rst_sync1_reg;
m_rst_sync3_reg <= m_rst_sync2_reg;
end
// Write logic
always @(posedge s_clk) begin
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
if (FRAME_FIFO && wr_ptr_update_valid_reg) begin
// have updated pointer to sync
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_commit_reg <= wr_ptr_commit_reg;
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end
end
if (s_axis_tready && s_axis_tvalid && LAST_ENABLE) begin
// track input frame status
s_frame_reg <= !s_axis_tlast;
end
if (s_rst_sync3_reg && LAST_ENABLE) begin
// if sink side is reset during transfer, drop partial frame
if (s_frame_reg && !(s_axis_tready && s_axis_tvalid && s_axis_tlast)) begin
drop_frame_reg <= 1'b1;
end
if (s_axis_tready && s_axis_tvalid && !s_axis_tlast) begin
drop_frame_reg <= 1'b1;
end
end
if (s_axis_tready && s_axis_tvalid) begin
// transfer in
if (!FRAME_FIFO) begin
// normal FIFO mode
mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis;
if (drop_frame_reg && LAST_ENABLE) begin
// currently dropping frame
// (only for frame transfers interrupted by sink reset)
if (s_axis_tlast) begin
// end of frame, clear drop flag
drop_frame_reg <= 1'b0;
end
end else begin
// update pointers
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
end
end else if ((full && DROP_WHEN_FULL) || (full_wr && DROP_OVERSIZE_FRAME) || drop_frame_reg) begin
// full, packet overflow, or currently dropping frame
// drop frame
drop_frame_reg <= 1'b1;
if (s_axis_tlast) begin
// end of frame, reset write pointer
wr_ptr_temp = wr_ptr_commit_reg;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else begin
mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis;
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
if (s_axis_tlast || (!DROP_OVERSIZE_FRAME && (full_wr || send_frame_reg))) begin
// end of frame or send frame
send_frame_reg <= !s_axis_tlast;
if (s_axis_tlast && DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin
// bad packet, reset write pointer
wr_ptr_temp = wr_ptr_commit_reg;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
bad_frame_reg <= 1'b1;
end else begin
// good packet or packet overflow, update write pointer
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_commit_reg <= wr_ptr_temp;
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end else begin
// sync in progress; flag it for later
wr_ptr_update_valid_reg <= 1'b1;
end
good_frame_reg <= s_axis_tlast;
end
end
end
end else if (s_axis_tvalid && full_wr && FRAME_FIFO && !DROP_OVERSIZE_FRAME) begin
// data valid with packet overflow
// update write pointer
send_frame_reg <= 1'b1;
wr_ptr_temp = wr_ptr_reg;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_commit_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_commit_reg <= wr_ptr_temp;
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end else begin
// sync in progress; flag it for later
wr_ptr_update_valid_reg <= 1'b1;
end
end
if (s_rst_sync3_reg) begin
wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_commit_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_sync_commit_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_update_reg <= 1'b0;
end
if (s_rst) begin
wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_commit_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_sync_commit_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_update_reg <= 1'b0;
s_frame_reg <= 1'b0;
drop_frame_reg <= 1'b0;
send_frame_reg <= 1'b0;
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
end
end
// pointer synchronization
always @(posedge s_clk) begin
rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg;
rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg;
wr_ptr_update_ack_sync1_reg <= wr_ptr_update_sync3_reg;
wr_ptr_update_ack_sync2_reg <= wr_ptr_update_ack_sync1_reg;
if (s_rst) begin
rd_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_update_ack_sync1_reg <= 1'b0;
wr_ptr_update_ack_sync2_reg <= 1'b0;
end
end
always @(posedge m_clk) begin
wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg;
wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg;
if (FRAME_FIFO && wr_ptr_update_sync2_reg ^ wr_ptr_update_sync3_reg) begin
wr_ptr_commit_sync_reg <= wr_ptr_sync_commit_reg;
end
wr_ptr_update_sync1_reg <= wr_ptr_update_reg;
wr_ptr_update_sync2_reg <= wr_ptr_update_sync1_reg;
wr_ptr_update_sync3_reg <= wr_ptr_update_sync2_reg;
if (FRAME_FIFO && m_rst_sync3_reg) begin
wr_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}};
end
if (m_rst) begin
wr_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_commit_sync_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_update_sync1_reg <= 1'b0;
wr_ptr_update_sync2_reg <= 1'b0;
wr_ptr_update_sync3_reg <= 1'b0;
end
end
// status synchronization
always @(posedge s_clk) begin
overflow_sync1_reg <= overflow_sync1_reg ^ overflow_reg;
bad_frame_sync1_reg <= bad_frame_sync1_reg ^ bad_frame_reg;
good_frame_sync1_reg <= good_frame_sync1_reg ^ good_frame_reg;
if (s_rst) begin
overflow_sync1_reg <= 1'b0;
bad_frame_sync1_reg <= 1'b0;
good_frame_sync1_reg <= 1'b0;
end
end
always @(posedge m_clk) begin
overflow_sync2_reg <= overflow_sync1_reg;
overflow_sync3_reg <= overflow_sync2_reg;
overflow_sync4_reg <= overflow_sync3_reg;
bad_frame_sync2_reg <= bad_frame_sync1_reg;
bad_frame_sync3_reg <= bad_frame_sync2_reg;
bad_frame_sync4_reg <= bad_frame_sync3_reg;
good_frame_sync2_reg <= good_frame_sync1_reg;
good_frame_sync3_reg <= good_frame_sync2_reg;
good_frame_sync4_reg <= good_frame_sync3_reg;
if (m_rst) begin
overflow_sync2_reg <= 1'b0;
overflow_sync3_reg <= 1'b0;
overflow_sync4_reg <= 1'b0;
bad_frame_sync2_reg <= 1'b0;
bad_frame_sync3_reg <= 1'b0;
bad_frame_sync4_reg <= 1'b0;
good_frame_sync2_reg <= 1'b0;
good_frame_sync3_reg <= 1'b0;
good_frame_sync4_reg <= 1'b0;
end
end
// Read logic
integer j;
always @(posedge m_clk) begin
if (OUTPUT_FIFO_ENABLE || m_axis_tready) begin
// output ready; invalidate stage
m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b0;
m_terminate_frame_reg <= 1'b0;
end
for (j = RAM_PIPELINE+1-1; j > 0; j = j - 1) begin
if (OUTPUT_FIFO_ENABLE || m_axis_tready || ((~m_axis_tvalid_pipe_reg) >> j)) begin
// output ready or bubble in pipeline; transfer down pipeline
m_axis_tvalid_pipe_reg[j] <= m_axis_tvalid_pipe_reg[j-1];
m_axis_pipe_reg[j] <= m_axis_pipe_reg[j-1];
m_axis_tvalid_pipe_reg[j-1] <= 1'b0;
end
end
if (OUTPUT_FIFO_ENABLE || m_axis_tready || ~m_axis_tvalid_pipe_reg) begin
// output ready or bubble in pipeline; read new data from FIFO
m_axis_tvalid_pipe_reg[0] <= 1'b0;
m_axis_pipe_reg[0] <= mem[rd_ptr_reg[ADDR_WIDTH-1:0]];
if (!empty && !m_rst_sync3_reg && !m_drop_frame_reg && pipe_ready) begin
// not empty, increment pointer
m_axis_tvalid_pipe_reg[0] <= 1'b1;
rd_ptr_temp = rd_ptr_reg + 1;
rd_ptr_reg <= rd_ptr_temp;
rd_ptr_gray_reg <= rd_ptr_temp ^ (rd_ptr_temp >> 1);
end
end
if (m_axis_tvalid_pipe && LAST_ENABLE) begin
// track output frame status
if (m_axis_tlast_pipe && (OUTPUT_FIFO_ENABLE || m_axis_tready)) begin
m_frame_reg <= 1'b0;
end else begin
m_frame_reg <= 1'b1;
end
end
if (m_drop_frame_reg && (OUTPUT_FIFO_ENABLE ? pipe_ready : m_axis_tready || !m_axis_tvalid_pipe) && LAST_ENABLE) begin
// terminate frame
// (only for frame transfers interrupted by source reset)
m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b1;
m_terminate_frame_reg <= 1'b1;
m_drop_frame_reg <= 1'b0;
end
if (m_rst_sync3_reg && LAST_ENABLE) begin
// if source side is reset during transfer, drop partial frame
// empty output pipeline, except for last stage
if (RAM_PIPELINE > 0) begin
m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-2:0] <= 0;
end
if (m_frame_reg && (!m_axis_tvalid_pipe || (m_axis_tvalid_pipe && !m_axis_tlast_pipe)) &&
!(m_drop_frame_reg || m_terminate_frame_reg)) begin
// terminate frame
m_drop_frame_reg <= 1'b1;
end
end
if (m_rst_sync3_reg) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
end
if (m_rst) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
m_axis_tvalid_pipe_reg <= 0;
m_frame_reg <= 1'b0;
m_drop_frame_reg <= 1'b0;
m_terminate_frame_reg <= 1'b0;
end
end
generate
if (!OUTPUT_FIFO_ENABLE) begin
assign pipe_ready = 1'b1;
assign m_axis_tvalid = m_axis_tvalid_pipe;
assign m_axis_tdata = m_axis_tdata_pipe;
assign m_axis_tkeep = m_axis_tkeep_pipe;
assign m_axis_tlast = m_axis_tlast_pipe;
assign m_axis_tid = m_axis_tid_pipe;
assign m_axis_tdest = m_axis_tdest_pipe;
assign m_axis_tuser = m_axis_tuser_pipe;
end else begin
// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0;
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0;
reg out_fifo_half_full_reg = 1'b0;
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}});
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [DATA_WIDTH-1:0] out_fifo_tdata[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [KEEP_WIDTH-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg out_fifo_tlast[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [ID_WIDTH-1:0] out_fifo_tid[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [DEST_WIDTH-1:0] out_fifo_tdest[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [USER_WIDTH-1:0] out_fifo_tuser[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
assign pipe_ready = !out_fifo_half_full_reg;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = LAST_ENABLE ? m_axis_tlast_reg : 1'b1;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
always @(posedge m_clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready;
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1);
if (!out_fifo_full && m_axis_tvalid_pipe) begin
out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdata_pipe;
out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tkeep_pipe;
out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tlast_pipe;
out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tid_pipe;
out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdest_pipe;
out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tuser_pipe;
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
end
if (!out_fifo_empty && (!m_axis_tvalid_reg || m_axis_tready)) begin
m_axis_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tvalid_reg <= 1'b1;
m_axis_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
end
if (m_rst) begin
out_fifo_wr_ptr_reg <= 0;
out_fifo_rd_ptr_reg <= 0;
m_axis_tvalid_reg <= 1'b0;
end
end
end
endgenerate
endmodule
`resetall