1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_srl_fifo.v
Alex Forencich 268d0c66b8 Rewrite resets
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-05-13 12:57:41 -07:00

200 lines
5.9 KiB
Verilog

/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream SRL-based FIFO
*/
module axis_srl_fifo #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8),
// Propagate tlast signal
parameter LAST_ENABLE = 1,
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// FIFO depth in cycles
parameter DEPTH = 16
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* Status
*/
output wire [$clog2(DEPTH+1)-1:0] count
);
localparam KEEP_OFFSET = DATA_WIDTH;
localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0);
localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0);
localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0);
localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0);
localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0);
reg [WIDTH-1:0] data_reg[DEPTH-1:0];
reg [$clog2(DEPTH+1)-1:0] ptr_reg = 0;
reg full_reg = 1'b0, full_next;
reg empty_reg = 1'b1, empty_next;
wire [WIDTH-1:0] s_axis;
wire [WIDTH-1:0] m_axis = data_reg[ptr_reg-1];
assign s_axis_tready = !full_reg;
generate
assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata;
if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep;
if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast;
if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid;
if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest;
if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser;
endgenerate
assign m_axis_tvalid = !empty_reg;
assign m_axis_tdata = m_axis[DATA_WIDTH-1:0];
assign m_axis_tkeep = KEEP_ENABLE ? m_axis[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}};
assign m_axis_tlast = LAST_ENABLE ? m_axis[LAST_OFFSET] : 1'b1;
assign m_axis_tid = ID_ENABLE ? m_axis[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis[USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}};
assign count = ptr_reg;
wire ptr_empty = ptr_reg == 0;
wire ptr_empty1 = ptr_reg == 1;
wire ptr_full = ptr_reg == DEPTH;
wire ptr_full1 = ptr_reg == DEPTH-1;
reg shift;
reg inc;
reg dec;
integer i;
initial begin
for (i = 0; i < DEPTH; i = i + 1) begin
data_reg[i] <= 0;
end
end
always @* begin
shift = 1'b0;
inc = 1'b0;
dec = 1'b0;
full_next = full_reg;
empty_next = empty_reg;
if (m_axis_tready && s_axis_tvalid && s_axis_tready) begin
shift = 1'b1;
inc = ptr_empty;
empty_next = 1'b0;
end else if (m_axis_tready && m_axis_tvalid) begin
dec = 1'b1;
full_next = 1'b0;
empty_next = ptr_empty1;
end else if (s_axis_tvalid && s_axis_tready) begin
shift = 1'b1;
inc = 1'b1;
full_next = ptr_full1;
empty_next = 1'b0;
end
end
always @(posedge clk) begin
if (inc) begin
ptr_reg <= ptr_reg + 1;
end else if (dec) begin
ptr_reg <= ptr_reg - 1;
end else begin
ptr_reg <= ptr_reg;
end
full_reg <= full_next;
empty_reg <= empty_next;
if (shift) begin
data_reg[0] <= s_axis;
for (i = 0; i < DEPTH-1; i = i + 1) begin
data_reg[i+1] <= data_reg[i];
end
end
if (rst) begin
ptr_reg <= 0;
full_reg <= 1'b0;
empty_reg <= 1'b1;
end
end
endmodule
`resetall