1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/modules/mqnic/mqnic_rx.c
2022-01-16 00:04:53 -08:00

459 lines
12 KiB
C

// SPDX-License-Identifier: BSD-2-Clause-Views
/*
* Copyright 2019-2021, The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies, either expressed or implied, of The Regents of the
* University of California.
*/
#include "mqnic.h"
int mqnic_create_rx_ring(struct mqnic_if *interface, struct mqnic_ring **ring_ptr,
int index, u8 __iomem *hw_addr)
{
struct mqnic_ring *ring;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
return -ENOMEM;
*ring_ptr = ring;
ring->dev = interface->dev;
ring->interface = interface;
ring->index = index;
ring->active = 0;
ring->hw_addr = hw_addr;
ring->hw_ptr_mask = 0xffff;
ring->hw_head_ptr = hw_addr + MQNIC_QUEUE_HEAD_PTR_REG;
ring->hw_tail_ptr = hw_addr + MQNIC_QUEUE_TAIL_PTR_REG;
ring->head_ptr = 0;
ring->tail_ptr = 0;
ring->clean_tail_ptr = 0;
// deactivate queue
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
return 0;
}
void mqnic_destroy_rx_ring(struct mqnic_ring **ring_ptr)
{
struct mqnic_ring *ring = *ring_ptr;
mqnic_free_rx_ring(ring);
*ring_ptr = NULL;
kfree(ring);
}
int mqnic_alloc_rx_ring(struct mqnic_ring *ring, int size, int stride)
{
int ret;
if (ring->active || ring->buf)
return -EINVAL;
ring->size = roundup_pow_of_two(size);
ring->size_mask = ring->size - 1;
ring->stride = roundup_pow_of_two(stride);
ring->desc_block_size = ring->stride / MQNIC_DESC_SIZE;
ring->log_desc_block_size = ring->desc_block_size < 2 ? 0 : ilog2(ring->desc_block_size - 1) + 1;
ring->desc_block_size = 1 << ring->log_desc_block_size;
ring->rx_info = kvzalloc(sizeof(*ring->rx_info) * ring->size, GFP_KERNEL);
if (!ring->rx_info)
return -ENOMEM;
ring->buf_size = ring->size * ring->stride;
ring->buf = dma_alloc_coherent(ring->dev, ring->buf_size, &ring->buf_dma_addr, GFP_KERNEL);
if (!ring->buf) {
ret = -ENOMEM;
goto fail_info;
}
ring->head_ptr = 0;
ring->tail_ptr = 0;
ring->clean_tail_ptr = 0;
// deactivate queue
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
// set base address
iowrite32(ring->buf_dma_addr, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 0);
iowrite32(ring->buf_dma_addr >> 32, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 4);
// set completion queue index
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_CPL_QUEUE_INDEX_REG);
// set pointers
iowrite32(ring->head_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_HEAD_PTR_REG);
iowrite32(ring->tail_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_TAIL_PTR_REG);
// set size
iowrite32(ilog2(ring->size) | (ring->log_desc_block_size << 8),
ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
return 0;
fail_info:
kvfree(ring->rx_info);
ring->rx_info = NULL;
return ret;
}
void mqnic_free_rx_ring(struct mqnic_ring *ring)
{
mqnic_deactivate_rx_ring(ring);
if (!ring->buf)
return;
mqnic_free_rx_buf(ring);
dma_free_coherent(ring->dev, ring->buf_size, ring->buf, ring->buf_dma_addr);
ring->buf = NULL;
ring->buf_dma_addr = 0;
kvfree(ring->rx_info);
ring->rx_info = NULL;
}
int mqnic_activate_rx_ring(struct mqnic_ring *ring, struct mqnic_priv *priv,
struct mqnic_cq_ring *cq_ring)
{
mqnic_deactivate_rx_ring(ring);
if (!ring->buf || !priv || !cq_ring || cq_ring->handler || cq_ring->src_ring)
return -EINVAL;
ring->priv = priv;
ring->cq_ring = cq_ring;
cq_ring->src_ring = ring;
cq_ring->handler = mqnic_rx_irq;
// deactivate queue
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
// set base address
iowrite32(ring->buf_dma_addr, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 0);
iowrite32(ring->buf_dma_addr >> 32, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 4);
// set completion queue index
iowrite32(cq_ring->index, ring->hw_addr + MQNIC_QUEUE_CPL_QUEUE_INDEX_REG);
// set pointers
iowrite32(ring->head_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_HEAD_PTR_REG);
iowrite32(ring->tail_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_TAIL_PTR_REG);
// set size and activate queue
iowrite32(ilog2(ring->size) | (ring->log_desc_block_size << 8) | MQNIC_QUEUE_ACTIVE_MASK,
ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
ring->active = 1;
mqnic_refill_rx_buffers(ring);
return 0;
}
void mqnic_deactivate_rx_ring(struct mqnic_ring *ring)
{
// deactivate queue
iowrite32(ilog2(ring->size) | (ring->log_desc_block_size << 8),
ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
if (ring->cq_ring) {
ring->cq_ring->src_ring = NULL;
ring->cq_ring->handler = NULL;
}
ring->priv = NULL;
ring->cq_ring = NULL;
ring->active = 0;
}
bool mqnic_is_rx_ring_empty(const struct mqnic_ring *ring)
{
return ring->head_ptr == ring->clean_tail_ptr;
}
bool mqnic_is_rx_ring_full(const struct mqnic_ring *ring)
{
return ring->head_ptr - ring->clean_tail_ptr >= ring->size;
}
void mqnic_rx_read_tail_ptr(struct mqnic_ring *ring)
{
ring->tail_ptr += (ioread32(ring->hw_tail_ptr) - ring->tail_ptr) & ring->hw_ptr_mask;
}
void mqnic_rx_write_head_ptr(struct mqnic_ring *ring)
{
iowrite32(ring->head_ptr & ring->hw_ptr_mask, ring->hw_head_ptr);
}
void mqnic_free_rx_desc(struct mqnic_ring *ring, int index)
{
struct mqnic_rx_info *rx_info = &ring->rx_info[index];
struct page *page = rx_info->page;
dma_unmap_page(ring->dev, dma_unmap_addr(rx_info, dma_addr),
dma_unmap_len(rx_info, len), PCI_DMA_FROMDEVICE);
rx_info->dma_addr = 0;
__free_pages(page, rx_info->page_order);
rx_info->page = NULL;
}
int mqnic_free_rx_buf(struct mqnic_ring *ring)
{
u32 index;
int cnt = 0;
while (!mqnic_is_rx_ring_empty(ring)) {
index = ring->clean_tail_ptr & ring->size_mask;
mqnic_free_rx_desc(ring, index);
ring->clean_tail_ptr++;
cnt++;
}
ring->head_ptr = 0;
ring->tail_ptr = 0;
ring->clean_tail_ptr = 0;
return cnt;
}
int mqnic_prepare_rx_desc(struct mqnic_ring *ring, int index)
{
struct mqnic_rx_info *rx_info = &ring->rx_info[index];
struct mqnic_desc *rx_desc = (struct mqnic_desc *)(ring->buf + index * ring->stride);
struct page *page = rx_info->page;
u32 page_order = ring->page_order;
u32 len = PAGE_SIZE << page_order;
dma_addr_t dma_addr;
if (unlikely(page)) {
dev_err(ring->dev, "%s: skb not yet processed on interface %d",
__func__, ring->interface->index);
return -1;
}
page = dev_alloc_pages(page_order);
if (unlikely(!page)) {
dev_err(ring->dev, "%s: failed to allocate memory on interface %d",
__func__, ring->interface->index);
return -1;
}
// map page
dma_addr = dma_map_page(ring->dev, page, 0, len, PCI_DMA_FROMDEVICE);
if (unlikely(dma_mapping_error(ring->dev, dma_addr))) {
dev_err(ring->dev, "%s: DMA mapping failed on interface %d",
__func__, ring->interface->index);
__free_pages(page, page_order);
return -1;
}
// write descriptor
rx_desc->len = cpu_to_le32(len);
rx_desc->addr = cpu_to_le64(dma_addr);
// update rx_info
rx_info->page = page;
rx_info->page_order = page_order;
rx_info->page_offset = 0;
rx_info->dma_addr = dma_addr;
rx_info->len = len;
return 0;
}
void mqnic_refill_rx_buffers(struct mqnic_ring *ring)
{
u32 missing = ring->size - (ring->head_ptr - ring->clean_tail_ptr);
if (missing < 8)
return;
for (; missing-- > 0;) {
if (mqnic_prepare_rx_desc(ring, ring->head_ptr & ring->size_mask))
break;
ring->head_ptr++;
}
// enqueue on NIC
dma_wmb();
mqnic_rx_write_head_ptr(ring);
}
int mqnic_process_rx_cq(struct mqnic_cq_ring *cq_ring, int napi_budget)
{
struct mqnic_if *interface = cq_ring->interface;
struct device *dev = interface->dev;
struct mqnic_ring *rx_ring = cq_ring->src_ring;
struct mqnic_priv *priv = rx_ring->priv;
struct mqnic_rx_info *rx_info;
struct mqnic_cpl *cpl;
struct sk_buff *skb;
struct page *page;
u32 cq_index;
u32 cq_tail_ptr;
u32 ring_index;
u32 ring_clean_tail_ptr;
int done = 0;
int budget = napi_budget;
u32 len;
if (unlikely(!priv || !priv->port_up))
return done;
// process completion queue
// read head pointer from NIC
mqnic_cq_read_head_ptr(cq_ring);
cq_tail_ptr = cq_ring->tail_ptr;
cq_index = cq_tail_ptr & cq_ring->size_mask;
mb(); // is a barrier here necessary? If so, what kind?
while (cq_ring->head_ptr != cq_tail_ptr && done < budget) {
cpl = (struct mqnic_cpl *)(cq_ring->buf + cq_index * cq_ring->stride);
ring_index = le16_to_cpu(cpl->index) & rx_ring->size_mask;
rx_info = &rx_ring->rx_info[ring_index];
page = rx_info->page;
if (unlikely(!page)) {
dev_err(dev, "%s: ring %d null page at index %d",
__func__, cq_ring->index, ring_index);
print_hex_dump(KERN_ERR, "", DUMP_PREFIX_NONE, 16, 1,
cpl, MQNIC_CPL_SIZE, true);
break;
}
skb = napi_get_frags(&cq_ring->napi);
if (unlikely(!skb)) {
dev_err(dev, "%s: ring %d failed to allocate skb",
__func__, cq_ring->index);
break;
}
// RX hardware timestamp
if (interface->if_features & MQNIC_IF_FEATURE_PTP_TS)
skb_hwtstamps(skb)->hwtstamp = mqnic_read_cpl_ts(interface->mdev, rx_ring, cpl);
skb_record_rx_queue(skb, rx_ring->index);
// RX hardware checksum
if (priv->ndev->features & NETIF_F_RXCSUM) {
skb->csum = csum_unfold((__sum16) cpu_to_be16(le16_to_cpu(cpl->rx_csum)));
skb->ip_summed = CHECKSUM_COMPLETE;
}
// unmap
dma_unmap_page(dev, dma_unmap_addr(rx_info, dma_addr),
dma_unmap_len(rx_info, len), PCI_DMA_FROMDEVICE);
rx_info->dma_addr = 0;
len = min_t(u32, le16_to_cpu(cpl->len), rx_info->len);
dma_sync_single_range_for_cpu(dev, rx_info->dma_addr, rx_info->page_offset,
rx_info->len, PCI_DMA_FROMDEVICE);
__skb_fill_page_desc(skb, 0, page, rx_info->page_offset, len);
rx_info->page = NULL;
skb_shinfo(skb)->nr_frags = 1;
skb->len = len;
skb->data_len = len;
skb->truesize += rx_info->len;
// hand off SKB
napi_gro_frags(&cq_ring->napi);
rx_ring->packets++;
rx_ring->bytes += le16_to_cpu(cpl->len);
done++;
cq_tail_ptr++;
cq_index = cq_tail_ptr & cq_ring->size_mask;
}
// update CQ tail
cq_ring->tail_ptr = cq_tail_ptr;
mqnic_cq_write_tail_ptr(cq_ring);
// process ring
// read tail pointer from NIC
mqnic_rx_read_tail_ptr(rx_ring);
ring_clean_tail_ptr = READ_ONCE(rx_ring->clean_tail_ptr);
ring_index = ring_clean_tail_ptr & rx_ring->size_mask;
while (ring_clean_tail_ptr != rx_ring->tail_ptr) {
rx_info = &rx_ring->rx_info[ring_index];
if (rx_info->page)
break;
ring_clean_tail_ptr++;
ring_index = ring_clean_tail_ptr & rx_ring->size_mask;
}
// update ring tail
WRITE_ONCE(rx_ring->clean_tail_ptr, ring_clean_tail_ptr);
// replenish buffers
mqnic_refill_rx_buffers(rx_ring);
return done;
}
void mqnic_rx_irq(struct mqnic_cq_ring *cq)
{
napi_schedule_irqoff(&cq->napi);
}
int mqnic_poll_rx_cq(struct napi_struct *napi, int budget)
{
struct mqnic_cq_ring *cq_ring = container_of(napi, struct mqnic_cq_ring, napi);
int done;
done = mqnic_process_rx_cq(cq_ring, budget);
if (done == budget)
return done;
napi_complete(napi);
mqnic_arm_cq(cq_ring);
return done;
}