1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_async_fifo.v
2020-09-07 00:14:22 -07:00

481 lines
17 KiB
Verilog

/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream asynchronous FIFO
*/
module axis_async_fifo #
(
// FIFO depth in words
// KEEP_WIDTH words per cycle if KEEP_ENABLE set
// Rounded up to nearest power of 2 cycles
parameter DEPTH = 4096,
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8),
// Propagate tlast signal
parameter LAST_ENABLE = 1,
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// number of output pipeline registers
parameter PIPELINE_OUTPUT = 2,
// Frame FIFO mode - operate on frames instead of cycles
// When set, m_axis_tvalid will not be deasserted within a frame
// Requires LAST_ENABLE set
parameter FRAME_FIFO = 0,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1,
// Drop frames marked bad
// Requires FRAME_FIFO set
parameter DROP_BAD_FRAME = 0,
// Drop incoming frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO set
parameter DROP_WHEN_FULL = 0
)
(
/*
* Common asynchronous reset
*/
input wire async_rst,
/*
* AXI input
*/
input wire s_clk,
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
input wire m_clk,
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* Status
*/
output wire s_status_overflow,
output wire s_status_bad_frame,
output wire s_status_good_frame,
output wire m_status_overflow,
output wire m_status_bad_frame,
output wire m_status_good_frame
);
parameter ADDR_WIDTH = (KEEP_ENABLE && KEEP_WIDTH > 1) ? $clog2(DEPTH/KEEP_WIDTH) : $clog2(DEPTH);
// check configuration
initial begin
if (PIPELINE_OUTPUT < 1) begin
$error("Error: PIPELINE_OUTPUT must be at least 1 (instance %m)");
$finish;
end
if (FRAME_FIFO && !LAST_ENABLE) begin
$error("Error: FRAME_FIFO set requires LAST_ENABLE set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && !FRAME_FIFO) begin
$error("Error: DROP_BAD_FRAME set requires FRAME_FIFO set (instance %m)");
$finish;
end
if (DROP_WHEN_FULL && !FRAME_FIFO) begin
$error("Error: DROP_WHEN_FULL set requires FRAME_FIFO set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin
$error("Error: Invalid USER_BAD_FRAME_MASK value (instance %m)");
$finish;
end
end
localparam KEEP_OFFSET = DATA_WIDTH;
localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0);
localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0);
localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0);
localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0);
localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0);
reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_cur_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_sync_gray_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_cur_gray_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_temp;
reg [ADDR_WIDTH:0] rd_ptr_temp;
reg [ADDR_WIDTH:0] wr_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_sync1_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_sync2_reg = {ADDR_WIDTH+1{1'b0}};
reg wr_ptr_update_valid_reg = 1'b0;
reg wr_ptr_update_reg = 1'b0;
reg wr_ptr_update_sync1_reg = 1'b0;
reg wr_ptr_update_sync2_reg = 1'b0;
reg wr_ptr_update_sync3_reg = 1'b0;
reg wr_ptr_update_ack_sync1_reg = 1'b0;
reg wr_ptr_update_ack_sync2_reg = 1'b0;
reg s_rst_sync1_reg = 1'b1;
reg s_rst_sync2_reg = 1'b1;
reg s_rst_sync3_reg = 1'b1;
reg m_rst_sync1_reg = 1'b1;
reg m_rst_sync2_reg = 1'b1;
reg m_rst_sync3_reg = 1'b1;
reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [WIDTH-1:0] mem_read_data_reg;
reg mem_read_data_valid_reg = 1'b0;
wire [WIDTH-1:0] s_axis;
reg [WIDTH-1:0] m_axis_pipe_reg[PIPELINE_OUTPUT-1:0];
reg [PIPELINE_OUTPUT-1:0] m_axis_tvalid_pipe_reg = 1'b0;
// full when first TWO MSBs do NOT match, but rest matches
// (gray code equivalent of first MSB different but rest same)
wire full = wr_ptr_gray_reg == (rd_ptr_gray_sync2_reg ^ {2'b11, {ADDR_WIDTH-1{1'b0}}});
wire full_cur = wr_ptr_cur_gray_reg == (rd_ptr_gray_sync2_reg ^ {2'b11, {ADDR_WIDTH-1{1'b0}}});
// empty when pointers match exactly
wire empty = rd_ptr_gray_reg == (FRAME_FIFO ? wr_ptr_gray_sync1_reg : wr_ptr_gray_sync2_reg);
// overflow within packet
wire full_wr = wr_ptr_reg == (wr_ptr_cur_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}});
// control signals
reg write;
reg read;
reg store_output;
reg drop_frame_reg = 1'b0;
reg overflow_reg = 1'b0;
reg bad_frame_reg = 1'b0;
reg good_frame_reg = 1'b0;
reg overflow_sync1_reg = 1'b0;
reg overflow_sync2_reg = 1'b0;
reg overflow_sync3_reg = 1'b0;
reg overflow_sync4_reg = 1'b0;
reg bad_frame_sync1_reg = 1'b0;
reg bad_frame_sync2_reg = 1'b0;
reg bad_frame_sync3_reg = 1'b0;
reg bad_frame_sync4_reg = 1'b0;
reg good_frame_sync1_reg = 1'b0;
reg good_frame_sync2_reg = 1'b0;
reg good_frame_sync3_reg = 1'b0;
reg good_frame_sync4_reg = 1'b0;
assign s_axis_tready = (FRAME_FIFO ? (!full_cur || full_wr || DROP_WHEN_FULL) : !full) && !s_rst_sync3_reg;
generate
assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata;
if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep;
if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast;
if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid;
if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest;
if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser;
endgenerate
assign m_axis_tvalid = m_axis_tvalid_pipe_reg[PIPELINE_OUTPUT-1];
assign m_axis_tdata = m_axis_pipe_reg[PIPELINE_OUTPUT-1][DATA_WIDTH-1:0];
assign m_axis_tkeep = KEEP_ENABLE ? m_axis_pipe_reg[PIPELINE_OUTPUT-1][KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}};
assign m_axis_tlast = LAST_ENABLE ? m_axis_pipe_reg[PIPELINE_OUTPUT-1][LAST_OFFSET] : 1'b1;
assign m_axis_tid = ID_ENABLE ? m_axis_pipe_reg[PIPELINE_OUTPUT-1][ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_pipe_reg[PIPELINE_OUTPUT-1][DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_pipe_reg[PIPELINE_OUTPUT-1][USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}};
assign s_status_overflow = overflow_reg;
assign s_status_bad_frame = bad_frame_reg;
assign s_status_good_frame = good_frame_reg;
assign m_status_overflow = overflow_sync3_reg ^ overflow_sync4_reg;
assign m_status_bad_frame = bad_frame_sync3_reg ^ bad_frame_sync4_reg;
assign m_status_good_frame = good_frame_sync3_reg ^ good_frame_sync4_reg;
// reset synchronization
always @(posedge s_clk or posedge async_rst) begin
if (async_rst) begin
s_rst_sync1_reg <= 1'b1;
s_rst_sync2_reg <= 1'b1;
s_rst_sync3_reg <= 1'b1;
end else begin
s_rst_sync1_reg <= 1'b0;
s_rst_sync2_reg <= s_rst_sync1_reg || m_rst_sync1_reg;
s_rst_sync3_reg <= s_rst_sync2_reg;
end
end
always @(posedge m_clk or posedge async_rst) begin
if (async_rst) begin
m_rst_sync1_reg <= 1'b1;
m_rst_sync2_reg <= 1'b1;
m_rst_sync3_reg <= 1'b1;
end else begin
m_rst_sync1_reg <= 1'b0;
m_rst_sync2_reg <= s_rst_sync1_reg || m_rst_sync1_reg;
m_rst_sync3_reg <= m_rst_sync2_reg;
end
end
// Write logic
always @(posedge s_clk) begin
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
if (FRAME_FIFO && wr_ptr_update_valid_reg) begin
// have updated pointer to sync
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_gray_reg <= wr_ptr_gray_reg;
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end
end
if (s_axis_tready && s_axis_tvalid) begin
// transfer in
if (!FRAME_FIFO) begin
// normal FIFO mode
mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis;
wr_ptr_temp = wr_ptr_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
end else if (full_cur || full_wr || drop_frame_reg) begin
// full, packet overflow, or currently dropping frame
// drop frame
drop_frame_reg <= 1'b1;
if (s_axis_tlast) begin
// end of frame, reset write pointer
wr_ptr_temp = wr_ptr_reg;
wr_ptr_cur_reg <= wr_ptr_temp;
wr_ptr_cur_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else begin
mem[wr_ptr_cur_reg[ADDR_WIDTH-1:0]] <= s_axis;
wr_ptr_temp = wr_ptr_cur_reg + 1;
wr_ptr_cur_reg <= wr_ptr_temp;
wr_ptr_cur_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
if (s_axis_tlast) begin
// end of frame
if (DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin
// bad packet, reset write pointer
wr_ptr_temp = wr_ptr_reg;
wr_ptr_cur_reg <= wr_ptr_temp;
wr_ptr_cur_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
bad_frame_reg <= 1'b1;
end else begin
// good packet, update write pointer
wr_ptr_temp = wr_ptr_cur_reg + 1;
wr_ptr_reg <= wr_ptr_temp;
wr_ptr_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
if (wr_ptr_update_reg == wr_ptr_update_ack_sync2_reg) begin
// no sync in progress; sync update
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_sync_gray_reg <= wr_ptr_temp ^ (wr_ptr_temp >> 1);
wr_ptr_update_reg <= !wr_ptr_update_ack_sync2_reg;
end else begin
// sync in progress; flag it for later
wr_ptr_update_valid_reg <= 1'b1;
end
good_frame_reg <= 1'b1;
end
end
end
end
if (s_rst_sync3_reg) begin
wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_cur_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_sync_gray_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_cur_gray_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_update_valid_reg <= 1'b0;
wr_ptr_update_reg <= 1'b0;
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
end
end
// pointer synchronization
always @(posedge s_clk) begin
rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg;
rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg;
wr_ptr_update_ack_sync1_reg <= wr_ptr_update_sync3_reg;
wr_ptr_update_ack_sync2_reg <= wr_ptr_update_ack_sync1_reg;
if (s_rst_sync3_reg) begin
rd_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_update_ack_sync1_reg <= 1'b0;
wr_ptr_update_ack_sync2_reg <= 1'b0;
end
end
always @(posedge m_clk) begin
if (!FRAME_FIFO) begin
wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg;
end else if (wr_ptr_update_sync2_reg ^ wr_ptr_update_sync3_reg) begin
wr_ptr_gray_sync1_reg <= wr_ptr_sync_gray_reg;
end
wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg;
wr_ptr_update_sync1_reg <= wr_ptr_update_reg;
wr_ptr_update_sync2_reg <= wr_ptr_update_sync1_reg;
wr_ptr_update_sync3_reg <= wr_ptr_update_sync2_reg;
if (m_rst_sync3_reg) begin
wr_ptr_gray_sync1_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_gray_sync2_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_update_sync1_reg <= 1'b0;
wr_ptr_update_sync2_reg <= 1'b0;
wr_ptr_update_sync3_reg <= 1'b0;
end
end
// status synchronization
always @(posedge s_clk) begin
overflow_sync1_reg <= overflow_sync1_reg ^ overflow_reg;
bad_frame_sync1_reg <= bad_frame_sync1_reg ^ bad_frame_reg;
good_frame_sync1_reg <= good_frame_sync1_reg ^ good_frame_reg;
if (s_rst_sync3_reg) begin
overflow_sync1_reg <= 1'b0;
bad_frame_sync1_reg <= 1'b0;
good_frame_sync1_reg <= 1'b0;
end
end
always @(posedge m_clk) begin
overflow_sync2_reg <= overflow_sync1_reg;
overflow_sync3_reg <= overflow_sync2_reg;
overflow_sync4_reg <= overflow_sync3_reg;
bad_frame_sync2_reg <= bad_frame_sync1_reg;
bad_frame_sync3_reg <= bad_frame_sync2_reg;
bad_frame_sync4_reg <= bad_frame_sync3_reg;
good_frame_sync2_reg <= good_frame_sync1_reg;
good_frame_sync3_reg <= good_frame_sync2_reg;
good_frame_sync4_reg <= good_frame_sync3_reg;
if (m_rst_sync3_reg) begin
overflow_sync2_reg <= 1'b0;
overflow_sync3_reg <= 1'b0;
overflow_sync4_reg <= 1'b0;
bad_frame_sync2_reg <= 1'b0;
bad_frame_sync3_reg <= 1'b0;
bad_frame_sync4_reg <= 1'b0;
good_frame_sync2_reg <= 1'b0;
good_frame_sync3_reg <= 1'b0;
good_frame_sync4_reg <= 1'b0;
end
end
// Read logic
integer j;
always @(posedge m_clk) begin
if (m_axis_tready) begin
// output ready; invalidate stage
m_axis_tvalid_pipe_reg[PIPELINE_OUTPUT-1] <= 1'b0;
end
for (j = PIPELINE_OUTPUT-1; j > 0; j = j - 1) begin
if (m_axis_tready || ((~m_axis_tvalid_pipe_reg) >> j)) begin
// output ready or bubble in pipeline; transfer down pipeline
m_axis_tvalid_pipe_reg[j] <= m_axis_tvalid_pipe_reg[j-1];
m_axis_pipe_reg[j] <= m_axis_pipe_reg[j-1];
m_axis_tvalid_pipe_reg[j-1] <= 1'b0;
end
end
if (m_axis_tready || ~m_axis_tvalid_pipe_reg) begin
// output ready or bubble in pipeline; read new data from FIFO
m_axis_tvalid_pipe_reg[0] <= 1'b0;
m_axis_pipe_reg[0] <= mem[rd_ptr_reg[ADDR_WIDTH-1:0]];
if (!empty) begin
// not empty, increment pointer
m_axis_tvalid_pipe_reg[0] <= 1'b1;
rd_ptr_temp = rd_ptr_reg + 1;
rd_ptr_reg <= rd_ptr_temp;
rd_ptr_gray_reg <= rd_ptr_temp ^ (rd_ptr_temp >> 1);
end
end
if (m_rst_sync3_reg) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
rd_ptr_gray_reg <= {ADDR_WIDTH+1{1'b0}};
m_axis_tvalid_pipe_reg <= {PIPELINE_OUTPUT{1'b0}};
end
end
endmodule