1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/fpga/lib/axi/rtl/axi_vfifo.v
2023-03-30 00:13:02 -07:00

612 lines
22 KiB
Verilog

/*
Copyright (c) 2023 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4 virtual FIFO
*/
module axi_vfifo #
(
// AXI channel count
parameter AXI_CH = 1,
// Width of AXI data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of AXI address bus in bits
parameter AXI_ADDR_WIDTH = 16,
// Width of AXI wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Maximum AXI burst length to generate
parameter AXI_MAX_BURST_LEN = 16,
// Width of AXI stream interfaces in bits
parameter AXIS_DATA_WIDTH = AXI_DATA_WIDTH*AXI_CH/2,
// Use AXI stream tkeep signal
parameter AXIS_KEEP_ENABLE = (AXIS_DATA_WIDTH>8),
// AXI stream tkeep signal width (words per cycle)
parameter AXIS_KEEP_WIDTH = (AXIS_DATA_WIDTH/8),
// Use AXI stream tlast signal
parameter AXIS_LAST_ENABLE = 1,
// Propagate AXI stream tid signal
parameter AXIS_ID_ENABLE = 0,
// AXI stream tid signal width
parameter AXIS_ID_WIDTH = 8,
// Propagate AXI stream tdest signal
parameter AXIS_DEST_ENABLE = 0,
// AXI stream tdest signal width
parameter AXIS_DEST_WIDTH = 8,
// Propagate AXI stream tuser signal
parameter AXIS_USER_ENABLE = 1,
// AXI stream tuser signal width
parameter AXIS_USER_WIDTH = 1,
// Width of length field
parameter LEN_WIDTH = AXI_ADDR_WIDTH,
// Maximum segment width
parameter MAX_SEG_WIDTH = 256,
// Input FIFO depth for AXI write data (full-width words)
parameter WRITE_FIFO_DEPTH = 64,
// Max AXI write burst length
parameter WRITE_MAX_BURST_LEN = WRITE_FIFO_DEPTH/4,
// Output FIFO depth for AXI read data (full-width words)
parameter READ_FIFO_DEPTH = 128,
// Max AXI read burst length
parameter READ_MAX_BURST_LEN = WRITE_MAX_BURST_LEN
)
(
input wire clk,
input wire rst,
/*
* AXI stream data input
*/
input wire s_axis_clk,
input wire s_axis_rst,
output wire s_axis_rst_out,
input wire [AXIS_DATA_WIDTH-1:0] s_axis_tdata,
input wire [AXIS_KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [AXIS_ID_WIDTH-1:0] s_axis_tid,
input wire [AXIS_DEST_WIDTH-1:0] s_axis_tdest,
input wire [AXIS_USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI stream data output
*/
input wire m_axis_clk,
input wire m_axis_rst,
output wire m_axis_rst_out,
output wire [AXIS_DATA_WIDTH-1:0] m_axis_tdata,
output wire [AXIS_KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [AXIS_ID_WIDTH-1:0] m_axis_tid,
output wire [AXIS_DEST_WIDTH-1:0] m_axis_tdest,
output wire [AXIS_USER_WIDTH-1:0] m_axis_tuser,
/*
* AXI master interfaces
*/
input wire [AXI_CH-1:0] m_axi_clk,
input wire [AXI_CH-1:0] m_axi_rst,
output wire [AXI_CH*AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [AXI_CH*AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [AXI_CH*8-1:0] m_axi_awlen,
output wire [AXI_CH*3-1:0] m_axi_awsize,
output wire [AXI_CH*2-1:0] m_axi_awburst,
output wire [AXI_CH-1:0] m_axi_awlock,
output wire [AXI_CH*4-1:0] m_axi_awcache,
output wire [AXI_CH*3-1:0] m_axi_awprot,
output wire [AXI_CH-1:0] m_axi_awvalid,
input wire [AXI_CH-1:0] m_axi_awready,
output wire [AXI_CH*AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [AXI_CH*AXI_STRB_WIDTH-1:0] m_axi_wstrb,
output wire [AXI_CH-1:0] m_axi_wlast,
output wire [AXI_CH-1:0] m_axi_wvalid,
input wire [AXI_CH-1:0] m_axi_wready,
input wire [AXI_CH*AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [AXI_CH*2-1:0] m_axi_bresp,
input wire [AXI_CH-1:0] m_axi_bvalid,
output wire [AXI_CH-1:0] m_axi_bready,
output wire [AXI_CH*AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [AXI_CH*AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [AXI_CH*8-1:0] m_axi_arlen,
output wire [AXI_CH*3-1:0] m_axi_arsize,
output wire [AXI_CH*2-1:0] m_axi_arburst,
output wire [AXI_CH-1:0] m_axi_arlock,
output wire [AXI_CH*4-1:0] m_axi_arcache,
output wire [AXI_CH*3-1:0] m_axi_arprot,
output wire [AXI_CH-1:0] m_axi_arvalid,
input wire [AXI_CH-1:0] m_axi_arready,
input wire [AXI_CH*AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [AXI_CH*AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [AXI_CH*2-1:0] m_axi_rresp,
input wire [AXI_CH-1:0] m_axi_rlast,
input wire [AXI_CH-1:0] m_axi_rvalid,
output wire [AXI_CH-1:0] m_axi_rready,
/*
* Configuration
*/
input wire [AXI_CH*AXI_ADDR_WIDTH-1:0] cfg_fifo_base_addr,
input wire [LEN_WIDTH-1:0] cfg_fifo_size_mask,
input wire cfg_enable,
input wire cfg_reset,
/*
* Status
*/
output wire [AXI_CH*(LEN_WIDTH+1)-1:0] sts_fifo_occupancy,
output wire [AXI_CH-1:0] sts_fifo_empty,
output wire [AXI_CH-1:0] sts_fifo_full,
output wire [AXI_CH-1:0] sts_reset,
output wire [AXI_CH-1:0] sts_active,
output wire sts_hdr_parity_err
);
parameter CH_SEG_CNT = AXI_DATA_WIDTH > MAX_SEG_WIDTH ? AXI_DATA_WIDTH / MAX_SEG_WIDTH : 1;
parameter SEG_CNT = CH_SEG_CNT * AXI_CH;
parameter SEG_WIDTH = AXI_DATA_WIDTH / CH_SEG_CNT;
wire [AXI_CH-1:0] ch_input_rst_out;
wire [AXI_CH-1:0] ch_input_watermark;
wire [SEG_CNT*SEG_WIDTH-1:0] ch_input_data;
wire [SEG_CNT-1:0] ch_input_valid;
wire [SEG_CNT-1:0] ch_input_ready;
wire [AXI_CH-1:0] ch_output_rst_out;
wire [SEG_CNT*SEG_WIDTH-1:0] ch_output_data;
wire [SEG_CNT-1:0] ch_output_valid;
wire [SEG_CNT-1:0] ch_output_ready;
wire [SEG_CNT*SEG_WIDTH-1:0] ch_output_ctrl_data;
wire [SEG_CNT-1:0] ch_output_ctrl_valid;
wire [SEG_CNT-1:0] ch_output_ctrl_ready;
wire [AXI_CH-1:0] ch_rst_req;
// config management
reg [AXI_CH*AXI_ADDR_WIDTH-1:0] cfg_fifo_base_addr_reg = 0;
reg [LEN_WIDTH-1:0] cfg_fifo_size_mask_reg = 0;
reg cfg_enable_reg = 0;
reg cfg_reset_reg = 0;
always @(posedge clk) begin
if (cfg_enable_reg) begin
if (cfg_reset) begin
cfg_enable_reg <= 1'b0;
end
end else begin
if (cfg_enable) begin
cfg_enable_reg <= 1'b1;
end
cfg_fifo_base_addr_reg <= cfg_fifo_base_addr;
cfg_fifo_size_mask_reg <= cfg_fifo_size_mask;
end
cfg_reset_reg <= cfg_reset;
if (rst) begin
cfg_enable_reg <= 0;
cfg_reset_reg <= 0;
end
end
// status sync
wire [AXI_CH*(LEN_WIDTH+1)-1:0] sts_fifo_occupancy_int;
wire [AXI_CH-1:0] sts_fifo_empty_int;
wire [AXI_CH-1:0] sts_fifo_full_int;
wire [AXI_CH-1:0] sts_reset_int;
wire [AXI_CH-1:0] sts_active_int;
wire sts_hdr_parity_err_int;
reg [3:0] sts_hdr_parity_err_cnt_reg = 0;
reg sts_hdr_parity_err_reg = 1'b0;
reg [2:0] sts_sync_count_reg = 0;
reg sts_sync_flag_reg = 1'b0;
(* shreg_extract = "no" *)
reg [AXI_CH*(LEN_WIDTH+1)-1:0] sts_fifo_occupancy_sync_reg = 0;
(* shreg_extract = "no" *)
reg [AXI_CH-1:0] sts_fifo_empty_sync_1_reg = 0, sts_fifo_empty_sync_2_reg = 0;
(* shreg_extract = "no" *)
reg [AXI_CH-1:0] sts_fifo_full_sync_1_reg = 0, sts_fifo_full_sync_2_reg = 0;
(* shreg_extract = "no" *)
reg [AXI_CH-1:0] sts_reset_sync_1_reg = 0, sts_reset_sync_2_reg = 0;
(* shreg_extract = "no" *)
reg [AXI_CH-1:0] sts_active_sync_1_reg = 0, sts_active_sync_2_reg = 0;
(* shreg_extract = "no" *)
reg sts_hdr_parity_err_sync_1_reg = 0, sts_hdr_parity_err_sync_2_reg = 0;
assign sts_fifo_occupancy = sts_fifo_occupancy_sync_reg;
assign sts_fifo_empty = sts_fifo_empty_sync_2_reg;
assign sts_fifo_full = sts_fifo_full_sync_2_reg;
assign sts_reset = sts_reset_sync_2_reg;
assign sts_active = sts_active_sync_2_reg;
assign sts_hdr_parity_err = sts_hdr_parity_err_sync_2_reg;
always @(posedge m_axis_clk) begin
sts_hdr_parity_err_reg <= 1'b0;
if (sts_hdr_parity_err_cnt_reg) begin
sts_hdr_parity_err_reg <= 1'b1;
sts_hdr_parity_err_cnt_reg <= sts_hdr_parity_err_cnt_reg - 1;
end
if (sts_hdr_parity_err_int) begin
sts_hdr_parity_err_cnt_reg <= 4'hf;
end
if (m_axis_rst) begin
sts_hdr_parity_err_cnt_reg <= 4'h0;
sts_hdr_parity_err_reg <= 1'b0;
end
end
always @(posedge clk) begin
sts_sync_count_reg <= sts_sync_count_reg + 1;
if (sts_sync_count_reg == 0) begin
sts_sync_flag_reg <= !sts_sync_flag_reg;
sts_fifo_occupancy_sync_reg <= sts_fifo_occupancy_int;
end
sts_fifo_empty_sync_1_reg <= sts_fifo_empty_int;
sts_fifo_empty_sync_2_reg <= sts_fifo_empty_sync_1_reg;
sts_fifo_full_sync_1_reg <= sts_fifo_full_int;
sts_fifo_full_sync_2_reg <= sts_fifo_full_sync_1_reg;
sts_reset_sync_1_reg <= sts_reset_int;
sts_reset_sync_2_reg <= sts_reset_sync_1_reg;
sts_active_sync_1_reg <= sts_active_int;
sts_active_sync_2_reg <= sts_active_sync_1_reg;
sts_hdr_parity_err_sync_1_reg <= sts_hdr_parity_err_reg;
sts_hdr_parity_err_sync_2_reg <= sts_hdr_parity_err_sync_1_reg;
end
assign s_axis_rst_out = |ch_input_rst_out;
axi_vfifo_enc #(
.SEG_WIDTH(SEG_WIDTH),
.SEG_CNT(SEG_CNT),
.AXIS_DATA_WIDTH(AXIS_DATA_WIDTH),
.AXIS_KEEP_ENABLE(AXIS_KEEP_ENABLE),
.AXIS_KEEP_WIDTH(AXIS_KEEP_WIDTH),
.AXIS_LAST_ENABLE(AXIS_LAST_ENABLE),
.AXIS_ID_ENABLE(AXIS_ID_ENABLE),
.AXIS_ID_WIDTH(AXIS_ID_WIDTH),
.AXIS_DEST_ENABLE(AXIS_DEST_ENABLE),
.AXIS_DEST_WIDTH(AXIS_DEST_WIDTH),
.AXIS_USER_ENABLE(AXIS_USER_ENABLE),
.AXIS_USER_WIDTH(AXIS_USER_WIDTH)
)
axi_vfifo_enc_inst (
.clk(s_axis_clk),
.rst(s_axis_rst),
/*
* AXI stream data input
*/
.s_axis_tdata(s_axis_tdata),
.s_axis_tkeep(s_axis_tkeep),
.s_axis_tvalid(s_axis_tvalid),
.s_axis_tready(s_axis_tready),
.s_axis_tlast(s_axis_tlast),
.s_axis_tid(s_axis_tid),
.s_axis_tdest(s_axis_tdest),
.s_axis_tuser(s_axis_tuser),
/*
* Segmented data output (to virtual FIFO channel)
*/
.fifo_rst_in(s_axis_rst_out),
.output_data(ch_input_data),
.output_valid(ch_input_valid),
.fifo_watermark_in(|ch_input_watermark)
);
generate
genvar n;
for (n = 0; n < AXI_CH; n = n + 1) begin : axi_ch
wire ch_clk = m_axi_clk[1*n +: 1];
wire ch_rst = m_axi_rst[1*n +: 1];
wire [AXI_ID_WIDTH-1:0] ch_axi_awid;
wire [AXI_ADDR_WIDTH-1:0] ch_axi_awaddr;
wire [7:0] ch_axi_awlen;
wire [2:0] ch_axi_awsize;
wire [1:0] ch_axi_awburst;
wire ch_axi_awlock;
wire [3:0] ch_axi_awcache;
wire [2:0] ch_axi_awprot;
wire ch_axi_awvalid;
wire ch_axi_awready;
wire [AXI_DATA_WIDTH-1:0] ch_axi_wdata;
wire [AXI_STRB_WIDTH-1:0] ch_axi_wstrb;
wire ch_axi_wlast;
wire ch_axi_wvalid;
wire ch_axi_wready;
wire [AXI_ID_WIDTH-1:0] ch_axi_bid;
wire [1:0] ch_axi_bresp;
wire ch_axi_bvalid;
wire ch_axi_bready;
wire [AXI_ID_WIDTH-1:0] ch_axi_arid;
wire [AXI_ADDR_WIDTH-1:0] ch_axi_araddr;
wire [7:0] ch_axi_arlen;
wire [2:0] ch_axi_arsize;
wire [1:0] ch_axi_arburst;
wire ch_axi_arlock;
wire [3:0] ch_axi_arcache;
wire [2:0] ch_axi_arprot;
wire ch_axi_arvalid;
wire ch_axi_arready;
wire [AXI_ID_WIDTH-1:0] ch_axi_rid;
wire [AXI_DATA_WIDTH-1:0] ch_axi_rdata;
wire [1:0] ch_axi_rresp;
wire ch_axi_rlast;
wire ch_axi_rvalid;
wire ch_axi_rready;
assign m_axi_awid[AXI_ID_WIDTH*n +: AXI_ID_WIDTH] = ch_axi_awid;
assign m_axi_awaddr[AXI_ADDR_WIDTH*n +: AXI_ADDR_WIDTH] = ch_axi_awaddr;
assign m_axi_awlen[8*n +: 8] = ch_axi_awlen;
assign m_axi_awsize[3*n +: 3] = ch_axi_awsize;
assign m_axi_awburst[2*n +: 2] = ch_axi_awburst;
assign m_axi_awlock[1*n +: 1] = ch_axi_awlock;
assign m_axi_awcache[4*n +: 4] = ch_axi_awcache;
assign m_axi_awprot[3*n +: 3] = ch_axi_awprot;
assign m_axi_awvalid[1*n +: 1] = ch_axi_awvalid;
assign ch_axi_awready = m_axi_awready[1*n +: 1];
assign m_axi_wdata[AXI_DATA_WIDTH*n +: AXI_DATA_WIDTH] = ch_axi_wdata;
assign m_axi_wstrb[AXI_STRB_WIDTH*n +: AXI_STRB_WIDTH] = ch_axi_wstrb;
assign m_axi_wlast[1*n +: 1] = ch_axi_wlast;
assign m_axi_wvalid[1*n +: 1] = ch_axi_wvalid;
assign ch_axi_wready = m_axi_wready[1*n +: 1];
assign ch_axi_bid = m_axi_bid[AXI_ID_WIDTH*n +: AXI_ID_WIDTH];
assign ch_axi_bresp = m_axi_bresp[2*n +: 2];
assign ch_axi_bvalid = m_axi_bvalid[1*n +: 1];
assign m_axi_bready[1*n +: 1] = ch_axi_bready;
assign m_axi_arid[AXI_ID_WIDTH*n +: AXI_ID_WIDTH] = ch_axi_arid;
assign m_axi_araddr[AXI_ADDR_WIDTH*n +: AXI_ADDR_WIDTH] = ch_axi_araddr;
assign m_axi_arlen[8*n +: 8] = ch_axi_arlen;
assign m_axi_arsize[3*n +: 3] = ch_axi_arsize;
assign m_axi_arburst[2*n +: 2] = ch_axi_arburst;
assign m_axi_arlock[1*n +: 1] = ch_axi_arlock;
assign m_axi_arcache[4*n +: 4] = ch_axi_arcache;
assign m_axi_arprot[3*n +: 3] = ch_axi_arprot;
assign m_axi_arvalid[1*n +: 1] = ch_axi_arvalid;
assign ch_axi_arready = m_axi_arready[1*n +: 1];
assign ch_axi_rid = m_axi_rid[AXI_ID_WIDTH*n +: AXI_ID_WIDTH];
assign ch_axi_rdata = m_axi_rdata[AXI_DATA_WIDTH*n +: AXI_DATA_WIDTH];
assign ch_axi_rresp = m_axi_rresp[2*n +: 2];
assign ch_axi_rlast = m_axi_rlast[1*n +: 1];
assign ch_axi_rvalid = m_axi_rvalid[1*n +: 1];
assign m_axi_rready[1*n +: 1] = ch_axi_rready;
// control sync
(* shreg_extract = "no" *)
reg ch_cfg_enable_sync_1_reg = 1'b0, ch_cfg_enable_sync_2_reg = 1'b0;
(* shreg_extract = "no" *)
reg ch_cfg_reset_sync_1_reg = 1'b0, ch_cfg_reset_sync_2_reg = 1'b0;
always @(posedge ch_clk) begin
ch_cfg_enable_sync_1_reg <= cfg_enable_reg;
ch_cfg_enable_sync_2_reg <= ch_cfg_enable_sync_1_reg;
ch_cfg_reset_sync_1_reg <= cfg_reset_reg;
ch_cfg_reset_sync_2_reg <= ch_cfg_reset_sync_1_reg;
end
// status sync
wire [LEN_WIDTH+1-1:0] ch_sts_fifo_occupancy;
reg [LEN_WIDTH+1-1:0] ch_sts_fifo_occupancy_reg;
(* shreg_extract = "no" *)
reg ch_sts_flag_sync_1_reg = 1'b0, ch_sts_flag_sync_2_reg = 1'b0, ch_sts_flag_sync_3_reg = 1'b0;
assign sts_fifo_occupancy_int[(LEN_WIDTH+1)*n +: LEN_WIDTH+1] = ch_sts_fifo_occupancy_reg;
always @(posedge ch_clk) begin
ch_sts_flag_sync_1_reg <= sts_sync_flag_reg;
ch_sts_flag_sync_2_reg <= ch_sts_flag_sync_1_reg;
ch_sts_flag_sync_3_reg <= ch_sts_flag_sync_2_reg;
if (ch_sts_flag_sync_3_reg ^ ch_sts_flag_sync_2_reg) begin
ch_sts_fifo_occupancy_reg <= ch_sts_fifo_occupancy;
end
end
axi_vfifo_raw #(
.SEG_WIDTH(SEG_WIDTH),
.SEG_CNT(CH_SEG_CNT),
.AXI_DATA_WIDTH(AXI_DATA_WIDTH),
.AXI_ADDR_WIDTH(AXI_ADDR_WIDTH),
.AXI_STRB_WIDTH(AXI_STRB_WIDTH),
.AXI_ID_WIDTH(AXI_ID_WIDTH),
.AXI_MAX_BURST_LEN(AXI_MAX_BURST_LEN),
.LEN_WIDTH(LEN_WIDTH),
.WRITE_FIFO_DEPTH(WRITE_FIFO_DEPTH),
.WRITE_MAX_BURST_LEN(WRITE_MAX_BURST_LEN),
.READ_FIFO_DEPTH(READ_FIFO_DEPTH),
.READ_MAX_BURST_LEN(READ_MAX_BURST_LEN),
.WATERMARK_LEVEL(WRITE_FIFO_DEPTH-4),
.CTRL_OUT_EN(1)
)
axi_vfifo_raw_inst (
.clk(ch_clk),
.rst(ch_rst),
/*
* Segmented data input (from encode logic)
*/
.input_clk(s_axis_clk),
.input_rst(s_axis_rst),
.input_rst_out(ch_input_rst_out[n]),
.input_watermark(ch_input_watermark[n]),
.input_data(ch_input_data[SEG_WIDTH*CH_SEG_CNT*n +: SEG_WIDTH*CH_SEG_CNT]),
.input_valid(ch_input_valid[CH_SEG_CNT*n +: CH_SEG_CNT]),
.input_ready(ch_input_ready[CH_SEG_CNT*n +: CH_SEG_CNT]),
/*
* Segmented data output (to decode logic)
*/
.output_clk(m_axis_clk),
.output_rst(m_axis_rst),
.output_rst_out(ch_output_rst_out[n]),
.output_data(ch_output_data[SEG_WIDTH*CH_SEG_CNT*n +: SEG_WIDTH*CH_SEG_CNT]),
.output_valid(ch_output_valid[CH_SEG_CNT*n +: CH_SEG_CNT]),
.output_ready(ch_output_ready[CH_SEG_CNT*n +: CH_SEG_CNT]),
.output_ctrl_data(ch_output_ctrl_data[SEG_WIDTH*CH_SEG_CNT*n +: SEG_WIDTH*CH_SEG_CNT]),
.output_ctrl_valid(ch_output_ctrl_valid[CH_SEG_CNT*n +: CH_SEG_CNT]),
.output_ctrl_ready(ch_output_ctrl_ready[CH_SEG_CNT*n +: CH_SEG_CNT]),
/*
* AXI master interface
*/
.m_axi_awid(ch_axi_awid),
.m_axi_awaddr(ch_axi_awaddr),
.m_axi_awlen(ch_axi_awlen),
.m_axi_awsize(ch_axi_awsize),
.m_axi_awburst(ch_axi_awburst),
.m_axi_awlock(ch_axi_awlock),
.m_axi_awcache(ch_axi_awcache),
.m_axi_awprot(ch_axi_awprot),
.m_axi_awvalid(ch_axi_awvalid),
.m_axi_awready(ch_axi_awready),
.m_axi_wdata(ch_axi_wdata),
.m_axi_wstrb(ch_axi_wstrb),
.m_axi_wlast(ch_axi_wlast),
.m_axi_wvalid(ch_axi_wvalid),
.m_axi_wready(ch_axi_wready),
.m_axi_bid(ch_axi_bid),
.m_axi_bresp(ch_axi_bresp),
.m_axi_bvalid(ch_axi_bvalid),
.m_axi_bready(ch_axi_bready),
.m_axi_arid(ch_axi_arid),
.m_axi_araddr(ch_axi_araddr),
.m_axi_arlen(ch_axi_arlen),
.m_axi_arsize(ch_axi_arsize),
.m_axi_arburst(ch_axi_arburst),
.m_axi_arlock(ch_axi_arlock),
.m_axi_arcache(ch_axi_arcache),
.m_axi_arprot(ch_axi_arprot),
.m_axi_arvalid(ch_axi_arvalid),
.m_axi_arready(ch_axi_arready),
.m_axi_rid(ch_axi_rid),
.m_axi_rdata(ch_axi_rdata),
.m_axi_rresp(ch_axi_rresp),
.m_axi_rlast(ch_axi_rlast),
.m_axi_rvalid(ch_axi_rvalid),
.m_axi_rready(ch_axi_rready),
/*
* Reset sync
*/
.rst_req_out(ch_rst_req[n]),
.rst_req_in(|ch_rst_req),
/*
* Configuration
*/
.cfg_fifo_base_addr(cfg_fifo_base_addr_reg[AXI_ADDR_WIDTH*n +: AXI_ADDR_WIDTH]),
.cfg_fifo_size_mask(cfg_fifo_size_mask_reg),
.cfg_enable(ch_cfg_enable_sync_2_reg),
.cfg_reset(ch_cfg_reset_sync_2_reg),
/*
* Status
*/
.sts_fifo_occupancy(ch_sts_fifo_occupancy),
.sts_fifo_empty(sts_fifo_empty_int[n]),
.sts_fifo_full(sts_fifo_full_int[n]),
.sts_reset(sts_reset_int[n]),
.sts_active(sts_active_int[n]),
.sts_write_active(),
.sts_read_active()
);
end
endgenerate
assign m_axis_rst_out = |ch_output_rst_out;
axi_vfifo_dec #(
.SEG_WIDTH(SEG_WIDTH),
.SEG_CNT(SEG_CNT),
.AXIS_DATA_WIDTH(AXIS_DATA_WIDTH),
.AXIS_KEEP_ENABLE(AXIS_KEEP_ENABLE),
.AXIS_KEEP_WIDTH(AXIS_KEEP_WIDTH),
.AXIS_LAST_ENABLE(AXIS_LAST_ENABLE),
.AXIS_ID_ENABLE(AXIS_ID_ENABLE),
.AXIS_ID_WIDTH(AXIS_ID_WIDTH),
.AXIS_DEST_ENABLE(AXIS_DEST_ENABLE),
.AXIS_DEST_WIDTH(AXIS_DEST_WIDTH),
.AXIS_USER_ENABLE(AXIS_USER_ENABLE),
.AXIS_USER_WIDTH(AXIS_USER_WIDTH)
)
axi_vfifo_dec_inst (
.clk(m_axis_clk),
.rst(m_axis_rst),
/*
* Segmented data input (from virtual FIFO channel)
*/
.fifo_rst_in(m_axis_rst_out),
.input_data(ch_output_data),
.input_valid(ch_output_valid),
.input_ready(ch_output_ready),
.input_ctrl_data(ch_output_ctrl_data),
.input_ctrl_valid(ch_output_ctrl_valid),
.input_ctrl_ready(ch_output_ctrl_ready),
/*
* AXI stream data output
*/
.m_axis_tdata(m_axis_tdata),
.m_axis_tkeep(m_axis_tkeep),
.m_axis_tvalid(m_axis_tvalid),
.m_axis_tready(m_axis_tready),
.m_axis_tlast(m_axis_tlast),
.m_axis_tid(m_axis_tid),
.m_axis_tdest(m_axis_tdest),
.m_axis_tuser(m_axis_tuser),
/*
* Status
*/
.sts_hdr_parity_err(sts_hdr_parity_err_int)
);
endmodule
`resetall