1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_cobs_encode.v
Alex Forencich b9e0af3634 Revert change to early ready conditions for improved throughput
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-09-18 12:07:11 -07:00

511 lines
17 KiB
Verilog

/*
Copyright (c) 2016-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream consistent overhead byte stuffing (COBS) encoder
*/
module axis_cobs_encode #
(
// append zero for in band framing
parameter APPEND_ZERO = 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [7:0] s_axis_tdata,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* AXI output
*/
output wire [7:0] m_axis_tdata,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser
);
// state register
localparam [1:0]
INPUT_STATE_IDLE = 2'd0,
INPUT_STATE_SEGMENT = 2'd1,
INPUT_STATE_FINAL_ZERO = 2'd2,
INPUT_STATE_APPEND_ZERO = 2'd3;
reg [1:0] input_state_reg = INPUT_STATE_IDLE, input_state_next;
localparam [0:0]
OUTPUT_STATE_IDLE = 1'd0,
OUTPUT_STATE_SEGMENT = 1'd1;
reg [0:0] output_state_reg = OUTPUT_STATE_IDLE, output_state_next;
reg [7:0] input_count_reg = 8'd0, input_count_next;
reg [7:0] output_count_reg = 8'd0, output_count_next;
reg fail_frame_reg = 1'b0, fail_frame_next;
// internal datapath
reg [7:0] m_axis_tdata_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
reg s_axis_tready_mask;
reg [7:0] code_fifo_in_tdata;
reg code_fifo_in_tvalid;
reg code_fifo_in_tlast;
reg code_fifo_in_tuser;
wire code_fifo_in_tready;
wire [7:0] code_fifo_out_tdata;
wire code_fifo_out_tvalid;
wire code_fifo_out_tlast;
wire code_fifo_out_tuser;
reg code_fifo_out_tready;
reg [7:0] data_fifo_in_tdata;
reg data_fifo_in_tvalid;
reg data_fifo_in_tlast;
wire data_fifo_in_tready;
wire [7:0] data_fifo_out_tdata;
wire data_fifo_out_tvalid;
wire data_fifo_out_tlast;
reg data_fifo_out_tready;
assign s_axis_tready = code_fifo_in_tready && data_fifo_in_tready && s_axis_tready_mask;
axis_fifo #(
.DEPTH(256),
.DATA_WIDTH(8),
.KEEP_ENABLE(0),
.LAST_ENABLE(1),
.ID_ENABLE(0),
.DEST_ENABLE(0),
.USER_ENABLE(1),
.USER_WIDTH(1),
.FRAME_FIFO(0)
)
code_fifo_inst (
.clk(clk),
.rst(rst),
// AXI input
.s_axis_tdata(code_fifo_in_tdata),
.s_axis_tkeep(0),
.s_axis_tvalid(code_fifo_in_tvalid),
.s_axis_tready(code_fifo_in_tready),
.s_axis_tlast(code_fifo_in_tlast),
.s_axis_tid(0),
.s_axis_tdest(0),
.s_axis_tuser(code_fifo_in_tuser),
// AXI output
.m_axis_tdata(code_fifo_out_tdata),
.m_axis_tkeep(),
.m_axis_tvalid(code_fifo_out_tvalid),
.m_axis_tready(code_fifo_out_tready),
.m_axis_tlast(code_fifo_out_tlast),
.m_axis_tid(),
.m_axis_tdest(),
.m_axis_tuser(code_fifo_out_tuser),
// Status
.status_overflow(),
.status_bad_frame(),
.status_good_frame()
);
axis_fifo #(
.DEPTH(256),
.DATA_WIDTH(8),
.KEEP_ENABLE(0),
.LAST_ENABLE(1),
.ID_ENABLE(0),
.DEST_ENABLE(0),
.USER_ENABLE(0),
.FRAME_FIFO(0)
)
data_fifo_inst (
.clk(clk),
.rst(rst),
// AXI input
.s_axis_tdata(data_fifo_in_tdata),
.s_axis_tkeep(0),
.s_axis_tvalid(data_fifo_in_tvalid),
.s_axis_tready(data_fifo_in_tready),
.s_axis_tlast(data_fifo_in_tlast),
.s_axis_tid(0),
.s_axis_tdest(0),
.s_axis_tuser(0),
// AXI output
.m_axis_tdata(data_fifo_out_tdata),
.m_axis_tkeep(),
.m_axis_tvalid(data_fifo_out_tvalid),
.m_axis_tready(data_fifo_out_tready),
.m_axis_tlast(data_fifo_out_tlast),
.m_axis_tid(),
.m_axis_tdest(),
.m_axis_tuser(),
// Status
.status_overflow(),
.status_bad_frame(),
.status_good_frame()
);
always @* begin
input_state_next = INPUT_STATE_IDLE;
input_count_next = input_count_reg;
fail_frame_next = fail_frame_reg;
s_axis_tready_mask = 1'b0;
code_fifo_in_tdata = 8'd0;
code_fifo_in_tvalid = 1'b0;
code_fifo_in_tlast = 1'b0;
code_fifo_in_tuser = 1'b0;
data_fifo_in_tdata = s_axis_tdata;
data_fifo_in_tvalid = 1'b0;
data_fifo_in_tlast = 1'b0;
case (input_state_reg)
INPUT_STATE_IDLE: begin
// idle state
s_axis_tready_mask = 1'b1;
fail_frame_next = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
// valid input data
if (s_axis_tdata == 8'd0 || (s_axis_tlast && s_axis_tuser)) begin
// got a zero or propagated error, so store a zero code
code_fifo_in_tdata = 8'd1;
code_fifo_in_tvalid = 1'b1;
if (s_axis_tlast) begin
// last byte, so close out the frame
fail_frame_next = s_axis_tuser;
input_state_next = INPUT_STATE_FINAL_ZERO;
end else begin
// return to idle to await next segment
input_state_next = INPUT_STATE_IDLE;
end
end else begin
// got something other than a zero, so store it and init the segment counter
input_count_next = 8'd2;
data_fifo_in_tdata = s_axis_tdata;
data_fifo_in_tvalid = 1'b1;
if (s_axis_tlast) begin
// last byte, so store the code and close out the frame
code_fifo_in_tdata = 8'd2;
code_fifo_in_tvalid = 1'b1;
if (APPEND_ZERO) begin
// zero frame mode, need to add a zero code to end the frame
input_state_next = INPUT_STATE_APPEND_ZERO;
end else begin
// normal frame mode, close out the frame
data_fifo_in_tlast = 1'b1;
input_state_next = INPUT_STATE_IDLE;
end
end else begin
// await more segment data
input_state_next = INPUT_STATE_SEGMENT;
end
end
end else begin
input_state_next = INPUT_STATE_IDLE;
end
end
INPUT_STATE_SEGMENT: begin
// encode segment
s_axis_tready_mask = 1'b1;
fail_frame_next = 1'b0;
if (s_axis_tready && s_axis_tvalid) begin
// valid input data
if (s_axis_tdata == 8'd0 || (s_axis_tlast && s_axis_tuser)) begin
// got a zero or propagated error, so store the code
code_fifo_in_tdata = input_count_reg;
code_fifo_in_tvalid = 1'b1;
if (s_axis_tlast) begin
// last byte, so close out the frame
fail_frame_next = s_axis_tuser;
input_state_next = INPUT_STATE_FINAL_ZERO;
end else begin
// return to idle to await next segment
input_state_next = INPUT_STATE_IDLE;
end
end else begin
// got something other than a zero, so store it and increment the segment counter
input_count_next = input_count_reg+1;
data_fifo_in_tdata = s_axis_tdata;
data_fifo_in_tvalid = 1'b1;
if (input_count_reg == 8'd254) begin
// 254 bytes in frame, so dump and reset counter
code_fifo_in_tdata = input_count_reg+1;
code_fifo_in_tvalid = 1'b1;
input_count_next = 8'd1;
end
if (s_axis_tlast) begin
// last byte, so store the code and close out the frame
code_fifo_in_tdata = input_count_reg+1;
code_fifo_in_tvalid = 1'b1;
if (APPEND_ZERO) begin
// zero frame mode, need to add a zero code to end the frame
input_state_next = INPUT_STATE_APPEND_ZERO;
end else begin
// normal frame mode, close out the frame
data_fifo_in_tlast = 1'b1;
input_state_next = INPUT_STATE_IDLE;
end
end else begin
// await more segment data
input_state_next = INPUT_STATE_SEGMENT;
end
end
end else begin
input_state_next = INPUT_STATE_SEGMENT;
end
end
INPUT_STATE_FINAL_ZERO: begin
// final zero code required
s_axis_tready_mask = 1'b0;
if (code_fifo_in_tready) begin
// push a zero code and close out frame
if (fail_frame_reg) begin
code_fifo_in_tdata = 8'd2;
code_fifo_in_tuser = 1'b1;
end else begin
code_fifo_in_tdata = 8'd1;
end
code_fifo_in_tvalid = 1'b1;
if (APPEND_ZERO) begin
// zero frame mode, need to add a zero code to end the frame
input_state_next = INPUT_STATE_APPEND_ZERO;
end else begin
// normal frame mode, close out the frame
code_fifo_in_tlast = 1'b1;
fail_frame_next = 1'b0;
input_state_next = INPUT_STATE_IDLE;
end
end else begin
input_state_next = INPUT_STATE_FINAL_ZERO;
end
end
INPUT_STATE_APPEND_ZERO: begin
// append zero for zero framing
s_axis_tready_mask = 1'b0;
if (code_fifo_in_tready) begin
// push frame termination code and close out frame
code_fifo_in_tdata = 8'd0;
code_fifo_in_tlast = 1'b1;
code_fifo_in_tuser = fail_frame_reg;
code_fifo_in_tvalid = 1'b1;
fail_frame_next = 1'b0;
input_state_next = INPUT_STATE_IDLE;
end else begin
input_state_next = INPUT_STATE_APPEND_ZERO;
end
end
endcase
end
always @* begin
output_state_next = OUTPUT_STATE_IDLE;
output_count_next = output_count_reg;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
code_fifo_out_tready = 1'b0;
data_fifo_out_tready = 1'b0;
case (output_state_reg)
OUTPUT_STATE_IDLE: begin
// idle state
if (m_axis_tready_int_reg && code_fifo_out_tvalid) begin
// transfer out code byte and load counter
m_axis_tdata_int = code_fifo_out_tdata;
m_axis_tlast_int = code_fifo_out_tlast;
m_axis_tuser_int = code_fifo_out_tuser && code_fifo_out_tlast;
output_count_next = code_fifo_out_tdata-1;
m_axis_tvalid_int = 1'b1;
code_fifo_out_tready = 1'b1;
if (code_fifo_out_tdata == 8'd0 || code_fifo_out_tdata == 8'd1 || code_fifo_out_tuser) begin
// frame termination and zero codes will be followed by codes
output_state_next = OUTPUT_STATE_IDLE;
end else begin
// transfer out data
output_state_next = OUTPUT_STATE_SEGMENT;
end
end else begin
output_state_next = OUTPUT_STATE_IDLE;
end
end
OUTPUT_STATE_SEGMENT: begin
// segment output
if (m_axis_tready_int_reg && data_fifo_out_tvalid) begin
// transfer out data byte and decrement counter
m_axis_tdata_int = data_fifo_out_tdata;
m_axis_tlast_int = data_fifo_out_tlast;
output_count_next = output_count_reg - 1;
m_axis_tvalid_int = 1'b1;
data_fifo_out_tready = 1'b1;
if (output_count_reg == 1'b1) begin
// done with segment, get a code byte next
output_state_next = OUTPUT_STATE_IDLE;
end else begin
// more data to transfer
output_state_next = OUTPUT_STATE_SEGMENT;
end
end else begin
output_state_next = OUTPUT_STATE_SEGMENT;
end
end
endcase
end
always @(posedge clk) begin
input_state_reg <= input_state_next;
output_state_reg <= output_state_next;
input_count_reg <= input_count_next;
output_count_reg <= output_count_next;
fail_frame_reg <= fail_frame_next;
if (rst) begin
input_state_reg <= INPUT_STATE_IDLE;
output_state_reg <= OUTPUT_STATE_IDLE;
end
end
// output datapath logic
reg [7:0] m_axis_tdata_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [7:0] temp_m_axis_tdata_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall