mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
455 lines
17 KiB
Verilog
455 lines
17 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2019 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* PTP clock CDC (clock domain crossing) module
|
|
*/
|
|
module ptp_clock_cdc #
|
|
(
|
|
parameter TS_WIDTH = 96,
|
|
parameter NS_WIDTH = 4,
|
|
parameter FNS_WIDTH = 16,
|
|
parameter INPUT_PERIOD_NS = 4'h6,
|
|
parameter INPUT_PERIOD_FNS = 16'h6666,
|
|
parameter OUTPUT_PERIOD_NS = 4'h6,
|
|
parameter OUTPUT_PERIOD_FNS = 16'h6666,
|
|
parameter USE_SAMPLE_CLOCK = 1,
|
|
parameter LOG_FIFO_DEPTH = 3,
|
|
parameter LOG_RATE = 3
|
|
)
|
|
(
|
|
input wire input_clk,
|
|
input wire input_rst,
|
|
input wire output_clk,
|
|
input wire output_rst,
|
|
input wire sample_clk,
|
|
|
|
/*
|
|
* Timestamp inputs from source PTP clock
|
|
*/
|
|
input wire [TS_WIDTH-1:0] input_ts,
|
|
|
|
/*
|
|
* Timestamp outputs
|
|
*/
|
|
output wire [TS_WIDTH-1:0] output_ts,
|
|
output wire output_ts_step,
|
|
|
|
/*
|
|
* PPS output
|
|
*/
|
|
output wire output_pps
|
|
);
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (TS_WIDTH != 64 && TS_WIDTH != 96) begin
|
|
$error("Error: Timestamp width must be 64 or 96");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
parameter TS_NS_WIDTH = TS_WIDTH == 96 ? 30 : 48;
|
|
|
|
parameter FIFO_ADDR_WIDTH = LOG_FIFO_DEPTH+1;
|
|
parameter LOG_AVG = 6;
|
|
parameter LOG_AVG_SCALE = LOG_AVG+8;
|
|
parameter LOG_AVG_SYNC_RATE = LOG_RATE;
|
|
parameter WR_PERIOD = ((((INPUT_PERIOD_NS << 16) + INPUT_PERIOD_FNS) + 64'd0) << 16) / ((OUTPUT_PERIOD_NS << 16) + OUTPUT_PERIOD_FNS) / 2**(LOG_RATE+1);
|
|
|
|
reg [NS_WIDTH-1:0] period_ns_reg = OUTPUT_PERIOD_NS;
|
|
reg [FNS_WIDTH-1:0] period_fns_reg = OUTPUT_PERIOD_FNS;
|
|
|
|
reg [47:0] ts_s_reg = 0;
|
|
reg [TS_NS_WIDTH-1:0] ts_ns_reg = 0;
|
|
reg [FNS_WIDTH-1:0] ts_fns_reg = 0;
|
|
reg [TS_NS_WIDTH-1:0] ts_ns_inc_reg = 0;
|
|
reg [FNS_WIDTH-1:0] ts_fns_inc_reg = 0;
|
|
reg [TS_NS_WIDTH+1-1:0] ts_ns_ovf_reg = {TS_NS_WIDTH{1'b1}};
|
|
reg [FNS_WIDTH-1:0] ts_fns_ovf_reg = {FNS_WIDTH{1'b1}};
|
|
|
|
reg ts_step_reg = 1'b0;
|
|
|
|
reg pps_reg = 0;
|
|
|
|
reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
|
|
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_gray_next;
|
|
reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
|
|
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_gray_next;
|
|
|
|
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
wire [FIFO_ADDR_WIDTH:0] wr_ptr_sync2;
|
|
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
wire [FIFO_ADDR_WIDTH:0] rd_ptr_sync2;
|
|
|
|
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sample_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
reg [FIFO_ADDR_WIDTH:0] wr_ptr_gray_sample_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
wire [FIFO_ADDR_WIDTH:0] wr_ptr_sample_sync2;
|
|
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sample_sync1_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
reg [FIFO_ADDR_WIDTH:0] rd_ptr_gray_sample_sync2_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
wire [FIFO_ADDR_WIDTH:0] rd_ptr_sample_sync2;
|
|
|
|
reg [15:0] wr_acc_reg = 16'd0, wr_acc_next;
|
|
reg [15:0] wr_inc_reg = WR_PERIOD, wr_inc_next;
|
|
reg [31:0] err_int_reg = 0, err_int_next;
|
|
|
|
reg [LOG_RATE-1:0] rd_cnt_reg = {LOG_RATE{1'b0}}, rd_cnt_next;
|
|
|
|
reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_acc_reg = 0;
|
|
reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_avg_reg = 0;
|
|
reg [LOG_AVG_SYNC_RATE-1:0] sample_cnt_reg = 0;
|
|
reg sample_update_reg = 1'b0;
|
|
reg sample_update_sync1_reg = 1'b0;
|
|
reg sample_update_sync2_reg = 1'b0;
|
|
reg sample_update_sync3_reg = 1'b0;
|
|
|
|
reg [TS_WIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0];
|
|
reg [TS_WIDTH-1:0] mem_read_data_reg = 0;
|
|
|
|
// full when first TWO MSBs do NOT match, but rest matches
|
|
// (gray code equivalent of first MSB different but rest same)
|
|
wire full = ((wr_ptr_gray_reg[FIFO_ADDR_WIDTH] != rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH]) &&
|
|
(wr_ptr_gray_reg[FIFO_ADDR_WIDTH-1] != rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH-1]) &&
|
|
(wr_ptr_gray_reg[FIFO_ADDR_WIDTH-2:0] == rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH-2:0]));
|
|
// empty when pointers match exactly
|
|
wire empty = rd_ptr_gray_reg == wr_ptr_gray_sync2_reg;
|
|
|
|
wire [FIFO_ADDR_WIDTH:0] wr_depth = wr_ptr_reg - rd_ptr_sync2;
|
|
wire [FIFO_ADDR_WIDTH:0] rd_depth = wr_ptr_sync2 - rd_ptr_reg;
|
|
wire [FIFO_ADDR_WIDTH:0] sample_depth = wr_ptr_sample_sync2 - rd_ptr_sample_sync2;
|
|
|
|
// control signals
|
|
reg write;
|
|
reg read;
|
|
|
|
generate
|
|
|
|
if (TS_WIDTH == 96) begin
|
|
assign output_ts[95:48] = ts_s_reg;
|
|
assign output_ts[47:46] = 2'b00;
|
|
assign output_ts[45:16] = ts_ns_reg;
|
|
assign output_ts[15:0] = FNS_WIDTH > 16 ? ts_fns_reg >> (FNS_WIDTH-16) : ts_fns_reg << (16-FNS_WIDTH);
|
|
end else if (TS_WIDTH == 64) begin
|
|
assign output_ts[63:16] = ts_ns_reg;
|
|
assign output_ts[15:0] = FNS_WIDTH > 16 ? ts_fns_reg >> (FNS_WIDTH-16) : ts_fns_reg << (16-FNS_WIDTH);
|
|
end
|
|
|
|
endgenerate
|
|
|
|
assign output_ts_step = ts_step_reg;
|
|
|
|
assign output_pps = pps_reg;
|
|
|
|
generate
|
|
|
|
genvar n;
|
|
|
|
for (n = 0; n < FIFO_ADDR_WIDTH+1; n = n + 1) begin
|
|
assign wr_ptr_sync2[n] = ^wr_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
|
|
assign rd_ptr_sync2[n] = ^rd_ptr_gray_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
|
|
assign wr_ptr_sample_sync2[n] = ^wr_ptr_gray_sample_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
|
|
assign rd_ptr_sample_sync2[n] = ^rd_ptr_gray_sample_sync2_reg[FIFO_ADDR_WIDTH+1-1:n];
|
|
end
|
|
|
|
endgenerate
|
|
|
|
// pointer sync
|
|
always @(posedge input_clk) begin
|
|
rd_ptr_gray_sync1_reg <= rd_ptr_gray_reg;
|
|
rd_ptr_gray_sync2_reg <= rd_ptr_gray_sync1_reg;
|
|
end
|
|
|
|
always @(posedge output_clk) begin
|
|
wr_ptr_gray_sync1_reg <= wr_ptr_gray_reg;
|
|
wr_ptr_gray_sync2_reg <= wr_ptr_gray_sync1_reg;
|
|
end
|
|
|
|
always @(posedge sample_clk) begin
|
|
rd_ptr_gray_sample_sync1_reg <= rd_ptr_gray_reg;
|
|
rd_ptr_gray_sample_sync2_reg <= rd_ptr_gray_sample_sync1_reg;
|
|
wr_ptr_gray_sample_sync1_reg <= wr_ptr_gray_reg;
|
|
wr_ptr_gray_sample_sync2_reg <= wr_ptr_gray_sample_sync1_reg;
|
|
end
|
|
|
|
always @(posedge sample_clk) begin
|
|
if (USE_SAMPLE_CLOCK) begin
|
|
sample_acc_reg <= sample_acc_reg + ((sample_depth * 2**LOG_AVG_SCALE - sample_acc_reg) >> LOG_AVG);
|
|
sample_cnt_reg <= sample_cnt_reg + 1;
|
|
|
|
if (sample_cnt_reg == 0) begin
|
|
sample_update_reg <= !sample_update_reg;
|
|
sample_avg_reg <= sample_acc_reg;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @(posedge input_clk) begin
|
|
sample_update_sync1_reg <= sample_update_reg;
|
|
sample_update_sync2_reg <= sample_update_sync1_reg;
|
|
sample_update_sync3_reg <= sample_update_sync2_reg;
|
|
end
|
|
|
|
reg [LOG_FIFO_DEPTH+LOG_AVG_SCALE+2-1:0] sample_avg_sync_reg = 0;
|
|
reg sample_avg_sync_valid_reg = 0;
|
|
|
|
always @(posedge input_clk) begin
|
|
if (USE_SAMPLE_CLOCK) begin
|
|
sample_avg_sync_valid_reg <= 1'b0;
|
|
if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin
|
|
sample_avg_sync_reg <= sample_avg_reg;
|
|
sample_avg_sync_valid_reg <= 1'b1;
|
|
end
|
|
end else begin
|
|
sample_acc_reg <= sample_acc_reg + ((wr_depth * 2**LOG_AVG_SCALE - sample_acc_reg) >> LOG_AVG);
|
|
sample_cnt_reg <= sample_cnt_reg + 1;
|
|
|
|
sample_avg_sync_valid_reg <= 1'b0;
|
|
if (sample_cnt_reg == 0) begin
|
|
sample_avg_sync_reg <= sample_acc_reg;
|
|
sample_avg_sync_valid_reg <= 1'b1;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
write = 1'b0;
|
|
|
|
wr_ptr_next = wr_ptr_reg;
|
|
wr_ptr_gray_next = wr_ptr_gray_reg;
|
|
|
|
wr_acc_next = wr_acc_reg + wr_inc_reg;
|
|
wr_inc_next = wr_inc_reg;
|
|
|
|
err_int_next = err_int_reg;
|
|
|
|
if (sample_avg_sync_valid_reg) begin
|
|
// updated sampled FIFO depth
|
|
err_int_next = err_int_reg + (sample_avg_sync_reg - (2**LOG_FIFO_DEPTH * 2**LOG_AVG_SCALE));
|
|
wr_inc_next = WR_PERIOD + (((2**LOG_FIFO_DEPTH * 2**LOG_AVG_SCALE) - sample_avg_sync_reg) >> 8) - ($signed(err_int_reg) >> 13);
|
|
if ($signed(wr_inc_next) > $signed(WR_PERIOD*4)) begin
|
|
wr_inc_next = WR_PERIOD*4;
|
|
end else if ($signed(wr_inc_next) < $signed(WR_PERIOD/4)) begin
|
|
wr_inc_next = WR_PERIOD/4;
|
|
end
|
|
end
|
|
|
|
if (!full && wr_acc_reg[15] != wr_acc_next[15]) begin
|
|
write = 1'b1;
|
|
wr_ptr_next = wr_ptr_reg + 1;
|
|
wr_ptr_gray_next = wr_ptr_next ^ (wr_ptr_next >> 1);
|
|
end
|
|
end
|
|
|
|
always @(posedge input_clk) begin
|
|
wr_ptr_reg <= wr_ptr_next;
|
|
wr_ptr_gray_reg <= wr_ptr_gray_next;
|
|
|
|
wr_acc_reg <= wr_acc_next;
|
|
wr_inc_reg <= wr_inc_next;
|
|
|
|
err_int_reg <= err_int_next;
|
|
|
|
if (write) begin
|
|
mem[wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= input_ts;
|
|
end
|
|
|
|
if (input_rst) begin
|
|
wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
wr_ptr_gray_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
wr_acc_reg <= 16'd0;
|
|
wr_inc_reg <= WR_PERIOD;
|
|
|
|
err_int_reg <= 0;
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
read = 1'b0;
|
|
|
|
rd_ptr_next = rd_ptr_reg;
|
|
rd_ptr_gray_next = rd_ptr_gray_reg;
|
|
|
|
rd_cnt_next = rd_cnt_reg + 1;
|
|
|
|
if (!empty && rd_cnt_reg == 0) begin
|
|
read = 1'b1;
|
|
rd_ptr_next = rd_ptr_reg + 1;
|
|
rd_ptr_gray_next = rd_ptr_next ^ (rd_ptr_next >> 1);
|
|
end
|
|
end
|
|
|
|
always @(posedge output_clk) begin
|
|
rd_ptr_reg <= rd_ptr_next;
|
|
rd_ptr_gray_reg <= rd_ptr_gray_next;
|
|
|
|
rd_cnt_reg <= rd_cnt_next;
|
|
|
|
if (!empty) begin
|
|
mem_read_data_reg <= mem[rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
|
|
end
|
|
|
|
if (read) begin
|
|
|
|
end
|
|
|
|
if (output_rst) begin
|
|
rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
rd_ptr_gray_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
rd_cnt_reg <= {LOG_RATE{1'b0}};
|
|
end
|
|
end
|
|
|
|
reg sec_mismatch_reg = 1'b0;
|
|
reg diff_valid_reg = 1'b0;
|
|
reg diff_offset_valid_reg = 1'b0;
|
|
|
|
reg [TS_NS_WIDTH+1-1:0] ts_ns_diff_reg = 31'd0;
|
|
reg [FNS_WIDTH-1:0] ts_fns_diff_reg = 16'd0;
|
|
|
|
reg [48:0] time_err_int_reg = 32'd0;
|
|
|
|
always @(posedge output_clk) begin
|
|
ts_step_reg <= 0;
|
|
|
|
diff_valid_reg <= 1'b0;
|
|
diff_offset_valid_reg <= 1'b0;
|
|
|
|
// 96 bit timestamp
|
|
if (TS_WIDTH == 96) begin
|
|
if (!ts_ns_ovf_reg[30]) begin
|
|
// if the overflow lookahead did not borrow, one second has elapsed
|
|
// increment seconds field, pre-compute both normal increment and overflow values
|
|
{ts_ns_inc_reg, ts_fns_inc_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg} + {period_ns_reg, period_fns_reg};
|
|
{ts_ns_ovf_reg, ts_fns_ovf_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg} + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
|
|
{ts_ns_reg, ts_fns_reg} <= {ts_ns_ovf_reg, ts_fns_ovf_reg};
|
|
ts_s_reg <= ts_s_reg + 1;
|
|
end else begin
|
|
// no increment seconds field, pre-compute both normal increment and overflow values
|
|
{ts_ns_inc_reg, ts_fns_inc_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg} + {period_ns_reg, period_fns_reg};
|
|
{ts_ns_ovf_reg, ts_fns_ovf_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg} + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
|
|
{ts_ns_reg, ts_fns_reg} <= {ts_ns_inc_reg, ts_fns_inc_reg};
|
|
ts_s_reg <= ts_s_reg;
|
|
end
|
|
end else if (TS_WIDTH == 64) begin
|
|
{ts_ns_reg, ts_fns_reg} <= {ts_ns_reg, ts_fns_reg} + {period_ns_reg, period_fns_reg};
|
|
end
|
|
|
|
// FIFO dequeue
|
|
if (read) begin
|
|
// dequeue from FIFO
|
|
if (TS_WIDTH == 96) begin
|
|
if (mem_read_data_reg[95:48] != ts_s_reg) begin
|
|
// seconds field doesn't match
|
|
if (!sec_mismatch_reg) begin
|
|
// ignore the first time
|
|
sec_mismatch_reg <= 1'b1;
|
|
end else begin
|
|
// two seconds mismatches in a row; step the clock
|
|
sec_mismatch_reg <= 1'b0;
|
|
|
|
{ts_ns_inc_reg, ts_fns_inc_reg} <= (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH)) + {period_ns_reg, period_fns_reg};
|
|
{ts_ns_ovf_reg, ts_fns_ovf_reg} <= (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH)) + {period_ns_reg, period_fns_reg} - {31'd1_000_000_000, {FNS_WIDTH{1'b0}}};
|
|
ts_s_reg <= mem_read_data_reg[95:48];
|
|
ts_ns_reg <= mem_read_data_reg[45:16];
|
|
ts_fns_reg <= FNS_WIDTH > 16 ? mem_read_data_reg[15:0] << (FNS_WIDTH-16) : mem_read_data_reg[15:0] >> (16-FNS_WIDTH);
|
|
ts_step_reg <= 1;
|
|
end
|
|
end else begin
|
|
// compute difference
|
|
sec_mismatch_reg <= 1'b0;
|
|
diff_valid_reg <= 1'b1;
|
|
{ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_reg, ts_fns_reg} - (FNS_WIDTH > 16 ? mem_read_data_reg[45:0] << (FNS_WIDTH-16) : mem_read_data_reg[45:0] >> (16-FNS_WIDTH));
|
|
end
|
|
end else if (TS_WIDTH == 64) begin
|
|
if (mem_read_data_reg[63:48] != ts_ns_reg[47:32]) begin
|
|
// high-order bits don't match
|
|
if (!sec_mismatch_reg) begin
|
|
// ignore the first time
|
|
sec_mismatch_reg <= 1'b1;
|
|
end else begin
|
|
// two seconds mismatches in a row; step the clock
|
|
sec_mismatch_reg <= 1'b0;
|
|
|
|
ts_ns_reg <= mem_read_data_reg[63:16];
|
|
ts_fns_reg <= FNS_WIDTH > 16 ? mem_read_data_reg[15:0] << (FNS_WIDTH-16) : mem_read_data_reg[15:0] >> (16-FNS_WIDTH);
|
|
ts_step_reg <= 1;
|
|
end
|
|
end else begin
|
|
// compute difference
|
|
sec_mismatch_reg <= 1'b0;
|
|
diff_valid_reg <= 1'b1;
|
|
{ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_reg, ts_fns_reg} - (FNS_WIDTH > 16 ? mem_read_data_reg[63:0] << (FNS_WIDTH-16) : mem_read_data_reg[63:0] >> (16-FNS_WIDTH));
|
|
end
|
|
end
|
|
end else if (diff_valid_reg) begin
|
|
// offset difference by FIFO delay
|
|
diff_offset_valid_reg <= 1'b1;
|
|
diff_valid_reg <= 1'b0;
|
|
{ts_ns_diff_reg, ts_fns_diff_reg} <= {ts_ns_diff_reg, ts_fns_diff_reg} - ({period_ns_reg, period_fns_reg} * 2**(LOG_RATE + LOG_FIFO_DEPTH));
|
|
end else if (diff_offset_valid_reg) begin
|
|
// PI control
|
|
diff_offset_valid_reg <= 1'b0;
|
|
if (($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) + ($signed(time_err_int_reg) / 2**16) > 4*2**16) begin
|
|
// limit positive adjustment
|
|
time_err_int_reg <= 0;
|
|
{period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) - ({4'd4, {FNS_WIDTH{1'b0}}});
|
|
end else if (($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) + ($signed(time_err_int_reg) / 2**16) < -8*2**16) begin
|
|
// limit negative adjustment
|
|
time_err_int_reg <= 0;
|
|
{period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) + ({4'd8, {FNS_WIDTH{1'b0}}});
|
|
end else begin
|
|
time_err_int_reg <= $signed(time_err_int_reg) + $signed({ts_ns_diff_reg, ts_fns_diff_reg});
|
|
{period_ns_reg, period_fns_reg} <= $signed(OUTPUT_PERIOD_NS*2**16 + OUTPUT_PERIOD_FNS) - ($signed({ts_ns_diff_reg, ts_fns_diff_reg}) / 2**10) - ($signed(time_err_int_reg) / 2**16);
|
|
end
|
|
end
|
|
|
|
if (TS_WIDTH == 96) begin
|
|
pps_reg <= !ts_ns_ovf_reg[30];
|
|
end else if (TS_WIDTH == 64) begin
|
|
pps_reg <= 1'b0; // not currently implemented for 64 bit timestamp format
|
|
end
|
|
|
|
if (output_rst) begin
|
|
period_ns_reg <= OUTPUT_PERIOD_NS;
|
|
period_fns_reg <= OUTPUT_PERIOD_FNS;
|
|
ts_s_reg <= 0;
|
|
ts_ns_reg <= 0;
|
|
ts_fns_reg <= 0;
|
|
ts_ns_inc_reg <= 0;
|
|
ts_fns_inc_reg <= 0;
|
|
ts_ns_ovf_reg <= {TS_NS_WIDTH{1'b1}};
|
|
ts_fns_ovf_reg <= {FNS_WIDTH{1'b1}};
|
|
ts_step_reg <= 0;
|
|
pps_reg <= 0;
|
|
end
|
|
end
|
|
|
|
endmodule
|