mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
677 lines
28 KiB
Verilog
677 lines
28 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2018 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* AXI4 width adapter
|
|
*/
|
|
module axi_adapter_rd #
|
|
(
|
|
parameter ADDR_WIDTH = 32,
|
|
parameter S_DATA_WIDTH = 32,
|
|
parameter S_STRB_WIDTH = (S_DATA_WIDTH/8),
|
|
parameter M_DATA_WIDTH = 32,
|
|
parameter M_STRB_WIDTH = (M_DATA_WIDTH/8),
|
|
parameter ID_WIDTH = 8,
|
|
parameter ARUSER_ENABLE = 0,
|
|
parameter ARUSER_WIDTH = 1,
|
|
parameter RUSER_ENABLE = 0,
|
|
parameter RUSER_WIDTH = 1,
|
|
parameter CONVERT_BURST = 1,
|
|
parameter CONVERT_NARROW_BURST = 0,
|
|
parameter FORWARD_ID = 0
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* AXI slave interface
|
|
*/
|
|
input wire [ID_WIDTH-1:0] s_axi_arid,
|
|
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
|
|
input wire [7:0] s_axi_arlen,
|
|
input wire [2:0] s_axi_arsize,
|
|
input wire [1:0] s_axi_arburst,
|
|
input wire s_axi_arlock,
|
|
input wire [3:0] s_axi_arcache,
|
|
input wire [2:0] s_axi_arprot,
|
|
input wire [3:0] s_axi_arqos,
|
|
input wire [3:0] s_axi_arregion,
|
|
input wire [ARUSER_WIDTH-1:0] s_axi_aruser,
|
|
input wire s_axi_arvalid,
|
|
output wire s_axi_arready,
|
|
output wire [ID_WIDTH-1:0] s_axi_rid,
|
|
output wire [S_DATA_WIDTH-1:0] s_axi_rdata,
|
|
output wire [1:0] s_axi_rresp,
|
|
output wire s_axi_rlast,
|
|
output wire [RUSER_WIDTH-1:0] s_axi_ruser,
|
|
output wire s_axi_rvalid,
|
|
input wire s_axi_rready,
|
|
|
|
/*
|
|
* AXI master interface
|
|
*/
|
|
output wire [ID_WIDTH-1:0] m_axi_arid,
|
|
output wire [ADDR_WIDTH-1:0] m_axi_araddr,
|
|
output wire [7:0] m_axi_arlen,
|
|
output wire [2:0] m_axi_arsize,
|
|
output wire [1:0] m_axi_arburst,
|
|
output wire m_axi_arlock,
|
|
output wire [3:0] m_axi_arcache,
|
|
output wire [2:0] m_axi_arprot,
|
|
output wire [3:0] m_axi_arqos,
|
|
output wire [3:0] m_axi_arregion,
|
|
output wire [ARUSER_WIDTH-1:0] m_axi_aruser,
|
|
output wire m_axi_arvalid,
|
|
input wire m_axi_arready,
|
|
input wire [ID_WIDTH-1:0] m_axi_rid,
|
|
input wire [M_DATA_WIDTH-1:0] m_axi_rdata,
|
|
input wire [1:0] m_axi_rresp,
|
|
input wire m_axi_rlast,
|
|
input wire [RUSER_WIDTH-1:0] m_axi_ruser,
|
|
input wire m_axi_rvalid,
|
|
output wire m_axi_rready
|
|
);
|
|
|
|
parameter S_ADDR_BIT_OFFSET = $clog2(S_STRB_WIDTH);
|
|
parameter M_ADDR_BIT_OFFSET = $clog2(M_STRB_WIDTH);
|
|
parameter S_WORD_WIDTH = S_STRB_WIDTH;
|
|
parameter M_WORD_WIDTH = M_STRB_WIDTH;
|
|
parameter S_WORD_SIZE = S_DATA_WIDTH/S_WORD_WIDTH;
|
|
parameter M_WORD_SIZE = M_DATA_WIDTH/M_WORD_WIDTH;
|
|
parameter S_BURST_SIZE = $clog2(S_STRB_WIDTH);
|
|
parameter M_BURST_SIZE = $clog2(M_STRB_WIDTH);
|
|
|
|
// output bus is wider
|
|
parameter EXPAND = M_STRB_WIDTH > S_STRB_WIDTH;
|
|
parameter DATA_WIDTH = EXPAND ? M_DATA_WIDTH : S_DATA_WIDTH;
|
|
parameter STRB_WIDTH = EXPAND ? M_STRB_WIDTH : S_STRB_WIDTH;
|
|
// required number of segments in wider bus
|
|
parameter SEGMENT_COUNT = EXPAND ? (M_STRB_WIDTH / S_STRB_WIDTH) : (S_STRB_WIDTH / M_STRB_WIDTH);
|
|
// data width and keep width per segment
|
|
parameter SEGMENT_DATA_WIDTH = DATA_WIDTH / SEGMENT_COUNT;
|
|
parameter SEGMENT_STRB_WIDTH = STRB_WIDTH / SEGMENT_COUNT;
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (S_WORD_SIZE * S_STRB_WIDTH != S_DATA_WIDTH) begin
|
|
$error("Error: AXI slave interface data width not evenly divisble");
|
|
$finish;
|
|
end
|
|
|
|
if (M_WORD_SIZE * M_STRB_WIDTH != M_DATA_WIDTH) begin
|
|
$error("Error: AXI master interface data width not evenly divisble");
|
|
$finish;
|
|
end
|
|
|
|
if (S_WORD_SIZE != M_WORD_SIZE) begin
|
|
$error("Error: word size mismatch");
|
|
$finish;
|
|
end
|
|
|
|
if (2**$clog2(S_WORD_WIDTH) != S_WORD_WIDTH) begin
|
|
$error("Error: AXI slave interface word width must be even power of two");
|
|
$finish;
|
|
end
|
|
|
|
if (2**$clog2(M_WORD_WIDTH) != M_WORD_WIDTH) begin
|
|
$error("Error: AXI master interface word width must be even power of two");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
localparam [1:0]
|
|
STATE_IDLE = 2'd0,
|
|
STATE_DATA = 2'd1,
|
|
STATE_DATA_READ = 2'd2,
|
|
STATE_DATA_SPLIT = 2'd3;
|
|
|
|
reg [1:0] state_reg = STATE_IDLE, state_next;
|
|
|
|
reg [ID_WIDTH-1:0] id_reg = {ID_WIDTH{1'b0}}, id_next;
|
|
reg [ADDR_WIDTH-1:0] addr_reg = {ADDR_WIDTH{1'b0}}, addr_next;
|
|
reg [DATA_WIDTH-1:0] data_reg = {DATA_WIDTH{1'b0}}, data_next;
|
|
reg [1:0] resp_reg = 2'd0, resp_next;
|
|
reg [RUSER_WIDTH-1:0] ruser_reg = {RUSER_WIDTH{1'b0}}, ruser_next;
|
|
reg [7:0] burst_reg = 8'd0, burst_next;
|
|
reg [2:0] burst_size_reg = 3'd0, burst_size_next;
|
|
reg [7:0] master_burst_reg = 8'd0, master_burst_next;
|
|
reg [2:0] master_burst_size_reg = 3'd0, master_burst_size_next;
|
|
|
|
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
|
|
|
|
reg [ID_WIDTH-1:0] m_axi_arid_reg = {ID_WIDTH{1'b0}}, m_axi_arid_next;
|
|
reg [ADDR_WIDTH-1:0] m_axi_araddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
|
|
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
|
|
reg [2:0] m_axi_arsize_reg = 3'd0, m_axi_arsize_next;
|
|
reg [1:0] m_axi_arburst_reg = 2'd0, m_axi_arburst_next;
|
|
reg m_axi_arlock_reg = 1'b0, m_axi_arlock_next;
|
|
reg [3:0] m_axi_arcache_reg = 4'd0, m_axi_arcache_next;
|
|
reg [2:0] m_axi_arprot_reg = 3'd0, m_axi_arprot_next;
|
|
reg [3:0] m_axi_arqos_reg = 4'd0, m_axi_arqos_next;
|
|
reg [3:0] m_axi_arregion_reg = 4'd0, m_axi_arregion_next;
|
|
reg [ARUSER_WIDTH-1:0] m_axi_aruser_reg = {ARUSER_WIDTH{1'b0}}, m_axi_aruser_next;
|
|
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
|
|
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
|
|
|
|
// internal datapath
|
|
reg [ID_WIDTH-1:0] s_axi_rid_int;
|
|
reg [S_DATA_WIDTH-1:0] s_axi_rdata_int;
|
|
reg [1:0] s_axi_rresp_int;
|
|
reg s_axi_rlast_int;
|
|
reg [RUSER_WIDTH-1:0] s_axi_ruser_int;
|
|
reg s_axi_rvalid_int;
|
|
reg s_axi_rready_int_reg = 1'b0;
|
|
wire s_axi_rready_int_early;
|
|
|
|
assign s_axi_arready = s_axi_arready_reg;
|
|
|
|
assign m_axi_arid = FORWARD_ID ? m_axi_arid_reg : {ID_WIDTH{1'b0}};
|
|
assign m_axi_araddr = m_axi_araddr_reg;
|
|
assign m_axi_arlen = m_axi_arlen_reg;
|
|
assign m_axi_arsize = m_axi_arsize_reg;
|
|
assign m_axi_arburst = m_axi_arburst_reg;
|
|
assign m_axi_arlock = m_axi_arlock_reg;
|
|
assign m_axi_arcache = m_axi_arcache_reg;
|
|
assign m_axi_arprot = m_axi_arprot_reg;
|
|
assign m_axi_arqos = m_axi_arqos_reg;
|
|
assign m_axi_arregion = m_axi_arregion_reg;
|
|
assign m_axi_aruser = ARUSER_ENABLE ? m_axi_aruser_reg : {ARUSER_WIDTH{1'b0}};
|
|
assign m_axi_arvalid = m_axi_arvalid_reg;
|
|
assign m_axi_rready = m_axi_rready_reg;
|
|
|
|
always @* begin
|
|
state_next = STATE_IDLE;
|
|
|
|
id_next = id_reg;
|
|
addr_next = addr_reg;
|
|
data_next = data_reg;
|
|
resp_next = resp_reg;
|
|
ruser_next = ruser_reg;
|
|
burst_next = burst_reg;
|
|
burst_size_next = burst_size_reg;
|
|
master_burst_next = master_burst_reg;
|
|
master_burst_size_next = master_burst_size_reg;
|
|
|
|
s_axi_arready_next = 1'b0;
|
|
m_axi_arid_next = m_axi_arid_reg;
|
|
m_axi_araddr_next = m_axi_araddr_reg;
|
|
m_axi_arlen_next = m_axi_arlen_reg;
|
|
m_axi_arsize_next = m_axi_arsize_reg;
|
|
m_axi_arburst_next = m_axi_arburst_reg;
|
|
m_axi_arlock_next = m_axi_arlock_reg;
|
|
m_axi_arcache_next = m_axi_arcache_reg;
|
|
m_axi_arprot_next = m_axi_arprot_reg;
|
|
m_axi_arqos_next = m_axi_arqos_reg;
|
|
m_axi_arregion_next = m_axi_arregion_reg;
|
|
m_axi_aruser_next = m_axi_aruser_reg;
|
|
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
|
|
m_axi_rready_next = 1'b0;
|
|
|
|
if (SEGMENT_COUNT == 1) begin
|
|
// master output is same width; direct transfer with no splitting/merging
|
|
s_axi_rid_int = id_reg;
|
|
s_axi_rdata_int = m_axi_rdata;
|
|
s_axi_rresp_int = m_axi_rresp;
|
|
s_axi_rlast_int = m_axi_rlast;
|
|
s_axi_ruser_int = m_axi_ruser;
|
|
s_axi_rvalid_int = 0;
|
|
|
|
case (state_reg)
|
|
STATE_IDLE: begin
|
|
// idle state; wait for new burst
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
|
|
if (s_axi_arready && s_axi_arvalid) begin
|
|
s_axi_arready_next = 1'b0;
|
|
id_next = s_axi_arid;
|
|
m_axi_arid_next = s_axi_arid;
|
|
m_axi_araddr_next = s_axi_araddr;
|
|
m_axi_arlen_next = s_axi_arlen;
|
|
m_axi_arsize_next = s_axi_arsize;
|
|
m_axi_arburst_next = s_axi_arburst;
|
|
m_axi_arlock_next = s_axi_arlock;
|
|
m_axi_arcache_next = s_axi_arcache;
|
|
m_axi_arprot_next = s_axi_arprot;
|
|
m_axi_arqos_next = s_axi_arqos;
|
|
m_axi_arregion_next = s_axi_arregion;
|
|
m_axi_aruser_next = s_axi_aruser;
|
|
m_axi_arvalid_next = 1'b1;
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
state_next = STATE_DATA;
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end
|
|
STATE_DATA: begin
|
|
// data state; transfer read data
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
|
|
if (m_axi_rready && m_axi_rvalid) begin
|
|
s_axi_rid_int = id_reg;
|
|
s_axi_rdata_int = m_axi_rdata;
|
|
s_axi_rresp_int = m_axi_rresp;
|
|
s_axi_rlast_int = m_axi_rlast;
|
|
s_axi_ruser_int = m_axi_ruser;
|
|
s_axi_rvalid_int = 1'b1;
|
|
if (m_axi_rlast) begin
|
|
// last data word, return to idle
|
|
m_axi_rready_next = 1'b0;
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
state_next = STATE_DATA;
|
|
end
|
|
end else begin
|
|
state_next = STATE_DATA;
|
|
end
|
|
end
|
|
endcase
|
|
end else if (EXPAND) begin
|
|
// master output is wider; split reads
|
|
s_axi_rid_int = id_reg;
|
|
s_axi_rdata_int = m_axi_rdata;
|
|
s_axi_rresp_int = m_axi_rresp;
|
|
s_axi_rlast_int = m_axi_rlast;
|
|
s_axi_ruser_int = m_axi_ruser;
|
|
s_axi_rvalid_int = 0;
|
|
|
|
case (state_reg)
|
|
STATE_IDLE: begin
|
|
// idle state; wait for new burst
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
|
|
if (s_axi_arready && s_axi_arvalid) begin
|
|
s_axi_arready_next = 1'b0;
|
|
id_next = s_axi_arid;
|
|
m_axi_arid_next = s_axi_arid;
|
|
m_axi_araddr_next = s_axi_araddr;
|
|
addr_next = s_axi_araddr;
|
|
burst_next = s_axi_arlen;
|
|
burst_size_next = s_axi_arsize;
|
|
if (CONVERT_BURST && s_axi_arcache[1] && (CONVERT_NARROW_BURST || s_axi_arsize == S_BURST_SIZE)) begin
|
|
// split reads
|
|
// require CONVERT_BURST and arcache[1] set
|
|
master_burst_size_next = M_BURST_SIZE;
|
|
if (CONVERT_NARROW_BURST) begin
|
|
m_axi_arlen_next = (({{S_ADDR_BIT_OFFSET+1{1'b0}}, s_axi_arlen} << s_axi_arsize) + s_axi_araddr[M_ADDR_BIT_OFFSET-1:0]) >> M_BURST_SIZE;
|
|
end else begin
|
|
m_axi_arlen_next = ({1'b0, s_axi_arlen} + s_axi_araddr[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET]) >> $clog2(SEGMENT_COUNT);
|
|
end
|
|
m_axi_arsize_next = M_BURST_SIZE;
|
|
state_next = STATE_DATA_READ;
|
|
end else begin
|
|
// output narrow burst
|
|
master_burst_size_next = s_axi_arsize;
|
|
m_axi_arlen_next = s_axi_arlen;
|
|
m_axi_arsize_next = s_axi_arsize;
|
|
state_next = STATE_DATA;
|
|
end
|
|
m_axi_arburst_next = s_axi_arburst;
|
|
m_axi_arlock_next = s_axi_arlock;
|
|
m_axi_arcache_next = s_axi_arcache;
|
|
m_axi_arprot_next = s_axi_arprot;
|
|
m_axi_arqos_next = s_axi_arqos;
|
|
m_axi_arregion_next = s_axi_arregion;
|
|
m_axi_aruser_next = s_axi_aruser;
|
|
m_axi_arvalid_next = 1'b1;
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end
|
|
STATE_DATA: begin
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
|
|
if (m_axi_rready && m_axi_rvalid) begin
|
|
s_axi_rid_int = id_reg;
|
|
s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
|
|
s_axi_rresp_int = m_axi_rresp;
|
|
s_axi_rlast_int = m_axi_rlast;
|
|
s_axi_ruser_int = m_axi_ruser;
|
|
s_axi_rvalid_int = 1'b1;
|
|
addr_next = addr_reg + (1 << burst_size_reg);
|
|
if (m_axi_rlast) begin
|
|
m_axi_rready_next = 1'b0;
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
state_next = STATE_DATA;
|
|
end
|
|
end else begin
|
|
state_next = STATE_DATA;
|
|
end
|
|
end
|
|
STATE_DATA_READ: begin
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
|
|
if (m_axi_rready && m_axi_rvalid) begin
|
|
s_axi_rid_int = id_reg;
|
|
data_next = m_axi_rdata;
|
|
resp_next = m_axi_rresp;
|
|
ruser_next = m_axi_ruser;
|
|
s_axi_rdata_int = m_axi_rdata >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
|
|
s_axi_rresp_int = m_axi_rresp;
|
|
s_axi_rlast_int = 1'b0;
|
|
s_axi_ruser_int = m_axi_ruser;
|
|
s_axi_rvalid_int = 1'b1;
|
|
burst_next = burst_reg - 1;
|
|
addr_next = addr_reg + (1 << burst_size_reg);
|
|
if (burst_reg == 0) begin
|
|
m_axi_rready_next = 1'b0;
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
s_axi_rlast_int = 1'b1;
|
|
state_next = STATE_IDLE;
|
|
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
|
|
state_next = STATE_DATA_READ;
|
|
end else begin
|
|
m_axi_rready_next = 1'b0;
|
|
state_next = STATE_DATA_SPLIT;
|
|
end
|
|
end else begin
|
|
state_next = STATE_DATA_READ;
|
|
end
|
|
end
|
|
STATE_DATA_SPLIT: begin
|
|
m_axi_rready_next = 1'b0;
|
|
|
|
if (s_axi_rready_int_reg) begin
|
|
s_axi_rid_int = id_reg;
|
|
s_axi_rdata_int = data_reg >> (addr_reg[M_ADDR_BIT_OFFSET-1:S_ADDR_BIT_OFFSET] * S_DATA_WIDTH);
|
|
s_axi_rresp_int = resp_reg;
|
|
s_axi_rlast_int = 1'b0;
|
|
s_axi_ruser_int = ruser_reg;
|
|
s_axi_rvalid_int = 1'b1;
|
|
burst_next = burst_reg - 1;
|
|
addr_next = addr_reg + (1 << burst_size_reg);
|
|
if (burst_reg == 0) begin
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
s_axi_rlast_int = 1'b1;
|
|
state_next = STATE_IDLE;
|
|
end else if (addr_next[master_burst_size_reg] != addr_reg[master_burst_size_reg]) begin
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
state_next = STATE_DATA_READ;
|
|
end else begin
|
|
state_next = STATE_DATA_SPLIT;
|
|
end
|
|
end else begin
|
|
state_next = STATE_DATA_SPLIT;
|
|
end
|
|
end
|
|
endcase
|
|
end else begin
|
|
// master output is narrower; merge reads and possibly split burst
|
|
s_axi_rid_int = id_reg;
|
|
s_axi_rdata_int = data_reg;
|
|
s_axi_rresp_int = resp_reg;
|
|
s_axi_rlast_int = 1'b0;
|
|
s_axi_ruser_int = m_axi_ruser;
|
|
s_axi_rvalid_int = 0;
|
|
|
|
case (state_reg)
|
|
STATE_IDLE: begin
|
|
// idle state; wait for new burst
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
|
|
resp_next = 2'd0;
|
|
|
|
if (s_axi_arready && s_axi_arvalid) begin
|
|
s_axi_arready_next = 1'b0;
|
|
id_next = s_axi_arid;
|
|
m_axi_arid_next = s_axi_arid;
|
|
m_axi_araddr_next = s_axi_araddr;
|
|
addr_next = s_axi_araddr;
|
|
burst_next = s_axi_arlen;
|
|
burst_size_next = s_axi_arsize;
|
|
if (s_axi_arsize > M_BURST_SIZE) begin
|
|
// need to adjust burst size
|
|
if ({s_axi_arlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_arsize) > 255) begin
|
|
// limit burst length to max
|
|
master_burst_next = 8'd255;
|
|
end else begin
|
|
master_burst_next = {s_axi_arlen, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-s_axi_arsize);
|
|
end
|
|
master_burst_size_next = M_BURST_SIZE;
|
|
m_axi_arlen_next = master_burst_next;
|
|
m_axi_arsize_next = master_burst_size_next;
|
|
end else begin
|
|
// pass through narrow (enough) burst
|
|
master_burst_next = s_axi_arlen;
|
|
master_burst_size_next = s_axi_arsize;
|
|
m_axi_arlen_next = s_axi_arlen;
|
|
m_axi_arsize_next = s_axi_arsize;
|
|
end
|
|
m_axi_arburst_next = s_axi_arburst;
|
|
m_axi_arlock_next = s_axi_arlock;
|
|
m_axi_arcache_next = s_axi_arcache;
|
|
m_axi_arprot_next = s_axi_arprot;
|
|
m_axi_arqos_next = s_axi_arqos;
|
|
m_axi_arregion_next = s_axi_arregion;
|
|
m_axi_aruser_next = s_axi_aruser;
|
|
m_axi_arvalid_next = 1'b1;
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
state_next = STATE_DATA;
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end
|
|
STATE_DATA: begin
|
|
m_axi_rready_next = s_axi_rready_int_early;
|
|
|
|
if (m_axi_rready && m_axi_rvalid) begin
|
|
data_next[addr_reg[S_ADDR_BIT_OFFSET-1:M_ADDR_BIT_OFFSET]*SEGMENT_DATA_WIDTH +: SEGMENT_DATA_WIDTH] = m_axi_rdata;
|
|
if (m_axi_rresp) begin
|
|
resp_next = m_axi_rresp;
|
|
end
|
|
s_axi_rid_int = id_reg;
|
|
s_axi_rdata_int = data_next;
|
|
s_axi_rresp_int = resp_next;
|
|
s_axi_rlast_int = 1'b0;
|
|
s_axi_ruser_int = m_axi_ruser;
|
|
s_axi_rvalid_int = 1'b0;
|
|
master_burst_next = master_burst_reg - 1;
|
|
addr_next = addr_reg + (1 << master_burst_size_reg);
|
|
if (addr_next[burst_size_reg] != addr_reg[burst_size_reg]) begin
|
|
data_next = {DATA_WIDTH{1'b0}};
|
|
burst_next = burst_reg - 1;
|
|
s_axi_rvalid_int = 1'b1;
|
|
end
|
|
if (master_burst_reg == 0) begin
|
|
if (burst_reg == 0) begin
|
|
s_axi_rlast_int = 1'b1;
|
|
s_axi_rvalid_int = 1'b1;
|
|
s_axi_arready_next = !m_axi_arvalid;
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
// start new burst
|
|
m_axi_araddr_next = addr_next;
|
|
if (burst_size_reg > M_BURST_SIZE) begin
|
|
// need to adjust burst size
|
|
if ({burst_next, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg) > 255) begin
|
|
// limit burst length to max
|
|
master_burst_next = 8'd255;
|
|
end else begin
|
|
master_burst_next = {burst_next, {S_BURST_SIZE-M_BURST_SIZE{1'b1}}} >> (S_BURST_SIZE-burst_size_reg);
|
|
end
|
|
master_burst_size_next = M_BURST_SIZE;
|
|
m_axi_arlen_next = master_burst_next;
|
|
m_axi_arsize_next = master_burst_size_next;
|
|
end else begin
|
|
// pass through narrow (enough) burst
|
|
master_burst_next = burst_next;
|
|
master_burst_size_next = burst_size_reg;
|
|
m_axi_arlen_next = burst_next;
|
|
m_axi_arsize_next = burst_size_reg;
|
|
end
|
|
m_axi_arlen_next = master_burst_next;
|
|
m_axi_arsize_next = master_burst_size_reg;
|
|
m_axi_arvalid_next = 1'b1;
|
|
state_next = STATE_DATA;
|
|
end
|
|
end else begin
|
|
state_next = STATE_DATA;
|
|
end
|
|
end else begin
|
|
state_next = STATE_DATA;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
state_reg <= STATE_IDLE;
|
|
s_axi_arready_reg <= 1'b0;
|
|
m_axi_arvalid_reg <= 1'b0;
|
|
m_axi_rready_reg <= 1'b0;
|
|
end else begin
|
|
state_reg <= state_next;
|
|
s_axi_arready_reg <= s_axi_arready_next;
|
|
m_axi_arvalid_reg <= m_axi_arvalid_next;
|
|
m_axi_rready_reg <= m_axi_rready_next;
|
|
end
|
|
|
|
id_reg <= id_next;
|
|
addr_reg <= addr_next;
|
|
data_reg <= data_next;
|
|
resp_reg <= resp_next;
|
|
ruser_reg <= ruser_next;
|
|
burst_reg <= burst_next;
|
|
burst_size_reg <= burst_size_next;
|
|
master_burst_reg <= master_burst_next;
|
|
master_burst_size_reg <= master_burst_size_next;
|
|
|
|
m_axi_arid_reg <= m_axi_arid_next;
|
|
m_axi_araddr_reg <= m_axi_araddr_next;
|
|
m_axi_arlen_reg <= m_axi_arlen_next;
|
|
m_axi_arsize_reg <= m_axi_arsize_next;
|
|
m_axi_arburst_reg <= m_axi_arburst_next;
|
|
m_axi_arlock_reg <= m_axi_arlock_next;
|
|
m_axi_arcache_reg <= m_axi_arcache_next;
|
|
m_axi_arprot_reg <= m_axi_arprot_next;
|
|
m_axi_arqos_reg <= m_axi_arqos_next;
|
|
m_axi_arregion_reg <= m_axi_arregion_next;
|
|
m_axi_aruser_reg <= m_axi_aruser_next;
|
|
end
|
|
|
|
// output datapath logic
|
|
reg [ID_WIDTH-1:0] s_axi_rid_reg = {ID_WIDTH{1'b0}};
|
|
reg [S_DATA_WIDTH-1:0] s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}};
|
|
reg [1:0] s_axi_rresp_reg = 2'd0;
|
|
reg s_axi_rlast_reg = 1'b0;
|
|
reg [RUSER_WIDTH-1:0] s_axi_ruser_reg = 1'b0;
|
|
reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
|
|
|
|
reg [ID_WIDTH-1:0] temp_s_axi_rid_reg = {ID_WIDTH{1'b0}};
|
|
reg [S_DATA_WIDTH-1:0] temp_s_axi_rdata_reg = {S_DATA_WIDTH{1'b0}};
|
|
reg [1:0] temp_s_axi_rresp_reg = 2'd0;
|
|
reg temp_s_axi_rlast_reg = 1'b0;
|
|
reg [RUSER_WIDTH-1:0] temp_s_axi_ruser_reg = 1'b0;
|
|
reg temp_s_axi_rvalid_reg = 1'b0, temp_s_axi_rvalid_next;
|
|
|
|
// datapath control
|
|
reg store_axi_r_int_to_output;
|
|
reg store_axi_r_int_to_temp;
|
|
reg store_axi_r_temp_to_output;
|
|
|
|
assign s_axi_rid = s_axi_rid_reg;
|
|
assign s_axi_rdata = s_axi_rdata_reg;
|
|
assign s_axi_rresp = s_axi_rresp_reg;
|
|
assign s_axi_rlast = s_axi_rlast_reg;
|
|
assign s_axi_ruser = RUSER_ENABLE ? s_axi_ruser_reg : {RUSER_WIDTH{1'b0}};
|
|
assign s_axi_rvalid = s_axi_rvalid_reg;
|
|
|
|
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
|
assign s_axi_rready_int_early = s_axi_rready | (~temp_s_axi_rvalid_reg & (~s_axi_rvalid_reg | ~s_axi_rvalid_int));
|
|
|
|
always @* begin
|
|
// transfer sink ready state to source
|
|
s_axi_rvalid_next = s_axi_rvalid_reg;
|
|
temp_s_axi_rvalid_next = temp_s_axi_rvalid_reg;
|
|
|
|
store_axi_r_int_to_output = 1'b0;
|
|
store_axi_r_int_to_temp = 1'b0;
|
|
store_axi_r_temp_to_output = 1'b0;
|
|
|
|
if (s_axi_rready_int_reg) begin
|
|
// input is ready
|
|
if (s_axi_rready | ~s_axi_rvalid_reg) begin
|
|
// output is ready or currently not valid, transfer data to output
|
|
s_axi_rvalid_next = s_axi_rvalid_int;
|
|
store_axi_r_int_to_output = 1'b1;
|
|
end else begin
|
|
// output is not ready, store input in temp
|
|
temp_s_axi_rvalid_next = s_axi_rvalid_int;
|
|
store_axi_r_int_to_temp = 1'b1;
|
|
end
|
|
end else if (s_axi_rready) begin
|
|
// input is not ready, but output is ready
|
|
s_axi_rvalid_next = temp_s_axi_rvalid_reg;
|
|
temp_s_axi_rvalid_next = 1'b0;
|
|
store_axi_r_temp_to_output = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
s_axi_rvalid_reg <= 1'b0;
|
|
s_axi_rready_int_reg <= 1'b0;
|
|
temp_s_axi_rvalid_reg <= 1'b0;
|
|
end else begin
|
|
s_axi_rvalid_reg <= s_axi_rvalid_next;
|
|
s_axi_rready_int_reg <= s_axi_rready_int_early;
|
|
temp_s_axi_rvalid_reg <= temp_s_axi_rvalid_next;
|
|
end
|
|
|
|
// datapath
|
|
if (store_axi_r_int_to_output) begin
|
|
s_axi_rid_reg <= s_axi_rid_int;
|
|
s_axi_rdata_reg <= s_axi_rdata_int;
|
|
s_axi_rresp_reg <= s_axi_rresp_int;
|
|
s_axi_rlast_reg <= s_axi_rlast_int;
|
|
s_axi_ruser_reg <= s_axi_ruser_int;
|
|
end else if (store_axi_r_temp_to_output) begin
|
|
s_axi_rid_reg <= temp_s_axi_rid_reg;
|
|
s_axi_rdata_reg <= temp_s_axi_rdata_reg;
|
|
s_axi_rresp_reg <= temp_s_axi_rresp_reg;
|
|
s_axi_rlast_reg <= temp_s_axi_rlast_reg;
|
|
s_axi_ruser_reg <= temp_s_axi_ruser_reg;
|
|
end
|
|
|
|
if (store_axi_r_int_to_temp) begin
|
|
temp_s_axi_rid_reg <= s_axi_rid_int;
|
|
temp_s_axi_rdata_reg <= s_axi_rdata_int;
|
|
temp_s_axi_rresp_reg <= s_axi_rresp_int;
|
|
temp_s_axi_rlast_reg <= s_axi_rlast_int;
|
|
temp_s_axi_ruser_reg <= s_axi_ruser_int;
|
|
end
|
|
end
|
|
|
|
endmodule
|