1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/dma_if_pcie_us_wr.v

983 lines
42 KiB
Verilog

/*
Copyright (c) 2019 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Ultrascale PCIe DMA write interface
*/
module dma_if_pcie_us_wr #
(
// Width of PCIe AXI stream interfaces in bits
parameter AXIS_PCIE_DATA_WIDTH = 256,
// PCIe AXI stream tkeep signal width (words per cycle)
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
// PCIe AXI stream RQ tuser signal width
parameter AXIS_PCIE_RQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 60 : 137,
// RAM segment count
parameter SEG_COUNT = AXIS_PCIE_DATA_WIDTH > 64 ? AXIS_PCIE_DATA_WIDTH*2 / 128 : 2,
// RAM segment data width
parameter SEG_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH*2/SEG_COUNT,
// RAM segment address width
parameter SEG_ADDR_WIDTH = 8,
// RAM segment byte enable width
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
// RAM select width
parameter RAM_SEL_WIDTH = 2,
// RAM address width
parameter RAM_ADDR_WIDTH = SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH),
// PCIe address width
parameter PCIE_ADDR_WIDTH = 64,
// Length field width
parameter LEN_WIDTH = 16,
// Tag field width
parameter TAG_WIDTH = 8
)
(
input wire clk,
input wire rst,
/*
* AXI input (RQ from read DMA IF)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rq_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rq_tkeep,
input wire s_axis_rq_tvalid,
output wire s_axis_rq_tready,
input wire s_axis_rq_tlast,
input wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] s_axis_rq_tuser,
/*
* AXI output (RQ)
*/
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata,
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep,
output wire m_axis_rq_tvalid,
input wire m_axis_rq_tready,
output wire m_axis_rq_tlast,
output wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser,
/*
* AXI write descriptor input
*/
input wire [PCIE_ADDR_WIDTH-1:0] s_axis_write_desc_pcie_addr,
input wire [RAM_SEL_WIDTH-1:0] s_axis_write_desc_ram_sel,
input wire [RAM_ADDR_WIDTH-1:0] s_axis_write_desc_ram_addr,
input wire [LEN_WIDTH-1:0] s_axis_write_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_write_desc_tag,
input wire s_axis_write_desc_valid,
output wire s_axis_write_desc_ready,
/*
* AXI write descriptor status output
*/
output wire [TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
output wire m_axis_write_desc_status_valid,
/*
* RAM interface
*/
output wire [SEG_COUNT*RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel,
output wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
output wire [SEG_COUNT-1:0] ram_rd_cmd_valid,
input wire [SEG_COUNT-1:0] ram_rd_cmd_ready,
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
input wire [SEG_COUNT-1:0] ram_rd_resp_valid,
output wire [SEG_COUNT-1:0] ram_rd_resp_ready,
/*
* Configuration
*/
input wire enable,
input wire [15:0] requester_id,
input wire requester_id_enable,
input wire [2:0] max_payload_size
);
parameter RAM_WORD_WIDTH = SEG_BE_WIDTH;
parameter RAM_WORD_SIZE = SEG_DATA_WIDTH/RAM_WORD_WIDTH;
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8);
parameter RAM_OFFSET_WIDTH = $clog2(SEG_COUNT*SEG_DATA_WIDTH/8);
parameter WORD_LEN_WIDTH = LEN_WIDTH - $clog2(AXIS_PCIE_KEEP_WIDTH);
parameter CYCLE_COUNT_WIDTH = 13-$clog2(AXIS_PCIE_KEEP_WIDTH*4);
parameter MASK_FIFO_ADDR_WIDTH = 5;
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
$error("Error: PCIe interface width must be 64, 128, or 256 (instance %m)");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
if (AXIS_PCIE_RQ_USER_WIDTH != 137) begin
$error("Error: PCIe RQ tuser width must be 137 (instance %m)");
$finish;
end
end else begin
if (AXIS_PCIE_RQ_USER_WIDTH != 60 && AXIS_PCIE_RQ_USER_WIDTH != 62) begin
$error("Error: PCIe RQ tuser width must be 60 or 62 (instance %m)");
$finish;
end
end
if (SEG_COUNT < 2) begin
$error("Error: RAM interface requires at least 2 segments (instance %m)");
$finish;
end
if (SEG_COUNT*SEG_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH*2) begin
$error("Error: RAM interface width must be double the PCIe interface width (instance %m)");
$finish;
end
if (SEG_BE_WIDTH * 8 != SEG_DATA_WIDTH) begin
$error("Error: RAM interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
if (2**$clog2(RAM_WORD_WIDTH) != RAM_WORD_WIDTH) begin
$error("Error: RAM word width must be even power of two (instance %m)");
$finish;
end
if (RAM_ADDR_WIDTH != SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH)) begin
$error("Error: RAM_ADDR_WIDTH does not match RAM configuration (instance %m)");
$finish;
end
end
localparam [3:0]
REQ_MEM_READ = 4'b0000,
REQ_MEM_WRITE = 4'b0001,
REQ_IO_READ = 4'b0010,
REQ_IO_WRITE = 4'b0011,
REQ_MEM_FETCH_ADD = 4'b0100,
REQ_MEM_SWAP = 4'b0101,
REQ_MEM_CAS = 4'b0110,
REQ_MEM_READ_LOCKED = 4'b0111,
REQ_CFG_READ_0 = 4'b1000,
REQ_CFG_READ_1 = 4'b1001,
REQ_CFG_WRITE_0 = 4'b1010,
REQ_CFG_WRITE_1 = 4'b1011,
REQ_MSG = 4'b1100,
REQ_MSG_VENDOR = 4'b1101,
REQ_MSG_ATS = 4'b1110;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [1:0]
READ_STATE_IDLE = 2'd0,
READ_STATE_START = 2'd1,
READ_STATE_READ = 2'd2;
reg [1:0] read_state_reg = READ_STATE_IDLE, read_state_next;
localparam [2:0]
TLP_STATE_IDLE = 3'd0,
TLP_STATE_HEADER_1 = 3'd1,
TLP_STATE_HEADER_2 = 3'd2,
TLP_STATE_TRANSFER = 3'd3,
TLP_STATE_PASSTHROUGH = 3'd4;
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
// datapath control signals
reg mask_fifo_we;
reg tlp_cmd_ready;
reg [RAM_SEL_WIDTH-1:0] ram_sel_reg = {RAM_SEL_WIDTH{1'b0}}, ram_sel_next;
reg [PCIE_ADDR_WIDTH-1:0] pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, pcie_addr_next;
reg [RAM_ADDR_WIDTH-1:0] read_addr_reg = {RAM_ADDR_WIDTH{1'b0}}, read_addr_next;
reg [LEN_WIDTH-1:0] op_count_reg = {LEN_WIDTH{1'b0}}, op_count_next;
reg [LEN_WIDTH-1:0] tr_count_reg = {LEN_WIDTH{1'b0}}, tr_count_next;
reg [LEN_WIDTH-1:0] tlp_count_reg = {LEN_WIDTH{1'b0}}, tlp_count_next;
reg [SEG_COUNT-1:0] read_ram_mask_reg = {SEG_COUNT{1'b0}}, read_ram_mask_next;
reg [SEG_COUNT-1:0] read_ram_mask_0_reg = {SEG_COUNT{1'b0}}, read_ram_mask_0_next;
reg [SEG_COUNT-1:0] read_ram_mask_1_reg = {SEG_COUNT{1'b0}}, read_ram_mask_1_next;
reg ram_wrap_reg = 1'b0, ram_wrap_next;
reg [CYCLE_COUNT_WIDTH-1:0] read_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, read_cycle_count_next;
reg read_last_cycle_reg = 1'b0, read_last_cycle_next;
reg [OFFSET_WIDTH+1-1:0] cycle_byte_count_reg = {OFFSET_WIDTH+1{1'b0}}, cycle_byte_count_next;
reg [RAM_OFFSET_WIDTH-1:0] start_offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, start_offset_next;
reg [RAM_OFFSET_WIDTH-1:0] end_offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, end_offset_next;
reg [PCIE_ADDR_WIDTH-1:0] tlp_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_addr_next;
reg [11:0] tlp_len_reg = 12'd0, tlp_len_next;
reg [RAM_OFFSET_WIDTH-1:0] offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, offset_next;
reg [9:0] dword_count_reg = 10'd0, dword_count_next;
reg [SEG_COUNT-1:0] ram_mask_reg = {SEG_COUNT{1'b0}}, ram_mask_next;
reg ram_mask_valid_reg = 1'b0, ram_mask_valid_next;
reg [CYCLE_COUNT_WIDTH-1:0] cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, cycle_count_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg last_tlp_reg = 1'b0, last_tlp_next;
reg [TAG_WIDTH-1:0] tag_reg = {TAG_WIDTH{1'b0}}, tag_next;
reg [PCIE_ADDR_WIDTH-1:0] tlp_cmd_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_cmd_pcie_addr_next;
reg [11:0] tlp_cmd_len_reg = 12'd0, tlp_cmd_len_next;
reg [9:0] tlp_cmd_dword_len_reg = 10'd0, tlp_cmd_dword_len_next;
reg [CYCLE_COUNT_WIDTH-1:0] tlp_cmd_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, tlp_cmd_cycle_count_next;
reg [RAM_OFFSET_WIDTH-1:0] tlp_cmd_offset_reg = {RAM_OFFSET_WIDTH{1'b0}}, tlp_cmd_offset_next;
reg [TAG_WIDTH-1:0] tlp_cmd_tag_reg = {TAG_WIDTH{1'b0}}, tlp_cmd_tag_next;
reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next;
reg tlp_cmd_valid_reg = 1'b0, tlp_cmd_valid_next;
reg [MASK_FIFO_ADDR_WIDTH+1-1:0] mask_fifo_wr_ptr_reg = 0;
reg [MASK_FIFO_ADDR_WIDTH+1-1:0] mask_fifo_rd_ptr_reg = 0, mask_fifo_rd_ptr_next;
reg [SEG_COUNT-1:0] mask_fifo_mask[(2**MASK_FIFO_ADDR_WIDTH)-1:0];
reg [SEG_COUNT-1:0] mask_fifo_wr_mask;
reg [10:0] max_payload_size_dw_reg = 11'd0;
reg s_axis_rq_tready_reg = 1'b0, s_axis_rq_tready_next;
reg s_axis_write_desc_ready_reg = 1'b0, s_axis_write_desc_ready_next;
reg [TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next;
reg m_axis_write_desc_status_valid_reg = 1'b0, m_axis_write_desc_status_valid_next;
reg [SEG_COUNT*RAM_SEL_WIDTH-1:0] ram_rd_cmd_sel_reg = 0, ram_rd_cmd_sel_next;
reg [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr_reg = 0, ram_rd_cmd_addr_next;
reg [SEG_COUNT-1:0] ram_rd_cmd_valid_reg = 0, ram_rd_cmd_valid_next;
reg [SEG_COUNT-1:0] ram_rd_resp_ready_cmb;
// internal datapath
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int;
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int;
reg m_axis_rq_tvalid_int;
reg m_axis_rq_tready_int_reg = 1'b0;
reg m_axis_rq_tlast_int;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_int;
wire m_axis_rq_tready_int_early;
assign s_axis_rq_tready = s_axis_rq_tready_reg;
assign s_axis_write_desc_ready = s_axis_write_desc_ready_reg;
assign m_axis_write_desc_status_tag = m_axis_write_desc_status_tag_reg;
assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg;
assign ram_rd_cmd_sel = ram_rd_cmd_sel_reg;
assign ram_rd_cmd_addr = ram_rd_cmd_addr_reg;
assign ram_rd_cmd_valid = ram_rd_cmd_valid_reg;
assign ram_rd_resp_ready = ram_rd_resp_ready_cmb;
wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_max_payload = pcie_addr_reg + {max_payload_size_dw_reg, 2'b00};
wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_op_count = pcie_addr_reg + op_count_reg;
integer i;
always @* begin
read_state_next = READ_STATE_IDLE;
s_axis_write_desc_ready_next = 1'b0;
ram_rd_cmd_sel_next = ram_rd_cmd_sel_reg;
ram_rd_cmd_addr_next = ram_rd_cmd_addr_reg;
ram_rd_cmd_valid_next = ram_rd_cmd_valid_reg & ~ram_rd_cmd_ready;
mask_fifo_we = 1'b0;
ram_sel_next = ram_sel_reg;
pcie_addr_next = pcie_addr_reg;
read_addr_next = read_addr_reg;
op_count_next = op_count_reg;
tr_count_next = tr_count_reg;
tlp_count_next = tlp_count_reg;
read_ram_mask_next = read_ram_mask_reg;
read_ram_mask_0_next = read_ram_mask_0_reg;
read_ram_mask_1_next = read_ram_mask_1_reg;
ram_wrap_next = ram_wrap_reg;
read_cycle_count_next = read_cycle_count_reg;
read_last_cycle_next = read_last_cycle_reg;
cycle_byte_count_next = cycle_byte_count_reg;
start_offset_next = start_offset_reg;
end_offset_next = end_offset_reg;
tlp_cmd_pcie_addr_next = tlp_cmd_pcie_addr_reg;
tlp_cmd_len_next = tlp_cmd_len_reg;
tlp_cmd_dword_len_next = tlp_cmd_dword_len_reg;
tlp_cmd_cycle_count_next = tlp_cmd_cycle_count_reg;
tlp_cmd_offset_next = tlp_cmd_offset_reg;
tlp_cmd_tag_next = tlp_cmd_tag_reg;
tlp_cmd_last_next = tlp_cmd_last_reg;
tlp_cmd_valid_next = tlp_cmd_valid_reg && !tlp_cmd_ready;
mask_fifo_wr_mask = read_ram_mask_reg;
// TLP segmentation and AXI read request generation
case (read_state_reg)
READ_STATE_IDLE: begin
// idle state, wait for incoming descriptor
s_axis_write_desc_ready_next = !tlp_cmd_valid_reg && enable;
ram_sel_next = s_axis_write_desc_ram_sel;
pcie_addr_next = s_axis_write_desc_pcie_addr;
read_addr_next = s_axis_write_desc_ram_addr;
op_count_next = s_axis_write_desc_len;
if (op_count_next <= {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]) begin
// packet smaller than max payload size
if ((pcie_addr_next ^ (pcie_addr_next + op_count_next)) & (1 << 12)) begin
// crosses 4k boundary
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one TLP
tlp_count_next = op_count_next;
end
end else begin
// packet larger than max payload size
if ((pcie_addr_next ^ (pcie_addr_next + {max_payload_size_dw_reg, 2'b00})) & (1 << 12)) begin
// crosses 4k boundary
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one TLP
tlp_count_next = {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0];
end
end
if (s_axis_write_desc_ready & s_axis_write_desc_valid) begin
s_axis_write_desc_ready_next = 1'b0;
tlp_cmd_tag_next = s_axis_write_desc_tag;
read_state_next = READ_STATE_START;
end else begin
read_state_next = READ_STATE_IDLE;
end
end
READ_STATE_START: begin
// start state, compute TLP length
if (!tlp_cmd_valid_reg) begin
if (AXIS_PCIE_DATA_WIDTH >= 256) begin
read_cycle_count_next = (tlp_count_next + 16+pcie_addr_reg[1:0] - 1) >> $clog2(AXIS_PCIE_DATA_WIDTH/8);
end else begin
read_cycle_count_next = (tlp_count_next + pcie_addr_reg[1:0] - 1) >> $clog2(AXIS_PCIE_DATA_WIDTH/8);
end
read_last_cycle_next = read_cycle_count_next == 0;
tlp_cmd_cycle_count_next = read_cycle_count_next;
if (AXIS_PCIE_DATA_WIDTH >= 256 && tlp_count_next > (AXIS_PCIE_DATA_WIDTH/8-16)-pcie_addr_reg[1:0]) begin
cycle_byte_count_next = (AXIS_PCIE_DATA_WIDTH/8-16)-pcie_addr_reg[1:0];
end else if (AXIS_PCIE_DATA_WIDTH <= 128 && tlp_count_next > AXIS_PCIE_DATA_WIDTH/8-pcie_addr_reg[1:0]) begin
cycle_byte_count_next = AXIS_PCIE_DATA_WIDTH/8-pcie_addr_reg[1:0];
end else begin
cycle_byte_count_next = tlp_count_next;
end
start_offset_next = read_addr_next;
end_offset_next = start_offset_next+cycle_byte_count_next-1;
ram_wrap_next = {1'b0, start_offset_next}+cycle_byte_count_next > 2**RAM_OFFSET_WIDTH;
read_ram_mask_0_next = {SEG_COUNT{1'b1}} << (start_offset_next >> $clog2(SEG_BE_WIDTH));
read_ram_mask_1_next = {SEG_COUNT{1'b1}} >> (SEG_COUNT-1-(end_offset_next >> $clog2(SEG_BE_WIDTH)));
if (!ram_wrap_next) begin
read_ram_mask_0_next = read_ram_mask_0_next & read_ram_mask_1_next;
read_ram_mask_1_next = 0;
end
read_ram_mask_next = read_ram_mask_0_next | read_ram_mask_1_next;
pcie_addr_next = pcie_addr_reg + tlp_count_next;
op_count_next = op_count_reg - tlp_count_next;
tlp_cmd_pcie_addr_next = pcie_addr_reg;
tlp_cmd_len_next = tlp_count_next;
tlp_cmd_dword_len_next = (tlp_count_next + pcie_addr_reg[1:0] + 3) >> 2;
if (AXIS_PCIE_DATA_WIDTH >= 256) begin
tlp_cmd_offset_next = 16+pcie_addr_reg[1:0]-read_addr_reg[RAM_OFFSET_WIDTH-1:0];
end else begin
tlp_cmd_offset_next = pcie_addr_reg[1:0]-read_addr_reg[RAM_OFFSET_WIDTH-1:0];
end
tlp_cmd_last_next = op_count_next == 0;
tlp_cmd_valid_next = 1'b1;
read_state_next = READ_STATE_READ;
end else begin
read_state_next = READ_STATE_START;
end
end
READ_STATE_READ: begin
// read state - start new read operations
// TODO check FIFO fill level
if (!(ram_rd_cmd_valid & ~ram_rd_cmd_ready & read_ram_mask_reg)) begin
// update counters
read_addr_next = read_addr_reg + cycle_byte_count_reg;
tlp_count_next = tlp_count_reg - cycle_byte_count_reg;
read_cycle_count_next = read_cycle_count_reg - 1;
read_last_cycle_next = read_cycle_count_next == 0;
for (i = 0; i < SEG_COUNT; i = i + 1) begin
if (read_ram_mask_0_reg[i]) begin
ram_rd_cmd_sel_next[i*RAM_SEL_WIDTH +: RAM_SEL_WIDTH] = ram_sel_reg;
ram_rd_cmd_addr_next[i*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = read_addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH];
ram_rd_cmd_valid_next[i] = 1'b1;
end
if (read_ram_mask_1_reg[i]) begin
ram_rd_cmd_sel_next[i*RAM_SEL_WIDTH +: RAM_SEL_WIDTH] = ram_sel_reg;
ram_rd_cmd_addr_next[i*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = read_addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH]+1;
ram_rd_cmd_valid_next[i] = 1'b1;
end
end
mask_fifo_wr_mask = read_ram_mask_reg;
mask_fifo_we = 1'b1;
if (tlp_count_next > AXIS_PCIE_DATA_WIDTH/8) begin
cycle_byte_count_next = AXIS_PCIE_DATA_WIDTH/8;
end else begin
cycle_byte_count_next = tlp_count_next;
end
start_offset_next = read_addr_next;
end_offset_next = start_offset_next+cycle_byte_count_next-1;
ram_wrap_next = {1'b0, start_offset_next}+cycle_byte_count_next > 2**RAM_OFFSET_WIDTH;
read_ram_mask_0_next = {SEG_COUNT{1'b1}} << (start_offset_next >> $clog2(SEG_BE_WIDTH));
read_ram_mask_1_next = {SEG_COUNT{1'b1}} >> (SEG_COUNT-1-(end_offset_next >> $clog2(SEG_BE_WIDTH)));
if (!ram_wrap_next) begin
read_ram_mask_0_next = read_ram_mask_0_next & read_ram_mask_1_next;
read_ram_mask_1_next = 0;
end
read_ram_mask_next = read_ram_mask_0_next | read_ram_mask_1_next;
if (!read_last_cycle_reg) begin
read_state_next = READ_STATE_READ;
end else if (!tlp_cmd_last_reg) begin
if (op_count_next <= {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0]) begin
// packet smaller than max payload size
if ((pcie_addr_next ^ (pcie_addr_next + op_count_next)) & (1 << 12)) begin
// crosses 4k boundary
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one TLP
tlp_count_next = op_count_next;
end
end else begin
// packet larger than max payload size
if ((pcie_addr_next ^ (pcie_addr_next + {max_payload_size_dw_reg, 2'b00})) & (1 << 12)) begin
// crosses 4k boundary
tlp_count_next = 13'h1000 - pcie_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one TLP
tlp_count_next = {max_payload_size_dw_reg, 2'b00}-pcie_addr_next[1:0];
end
end
read_state_next = READ_STATE_START;
end else begin
s_axis_write_desc_ready_next = !tlp_cmd_valid_reg && enable;
read_state_next = READ_STATE_IDLE;
end
end else begin
read_state_next = READ_STATE_READ;
end
end
endcase
end
wire [3:0] first_be = 4'b1111 << tlp_addr_reg[1:0];
wire [3:0] last_be = 4'b1111 >> (3 - ((tlp_addr_reg[1:0] + tlp_len_reg[1:0] - 1) & 3));
always @* begin
tlp_state_next = TLP_STATE_IDLE;
tlp_cmd_ready = 1'b0;
m_axis_write_desc_status_tag_next = m_axis_write_desc_status_tag_reg;
m_axis_write_desc_status_valid_next = 1'b0;
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
tlp_addr_next = tlp_addr_reg;
tlp_len_next = tlp_len_reg;
dword_count_next = dword_count_reg;
offset_next = offset_reg;
ram_mask_next = ram_mask_reg;
ram_mask_valid_next = ram_mask_valid_reg;
cycle_count_next = cycle_count_reg;
last_cycle_next = last_cycle_reg;
last_tlp_next = last_tlp_reg;
tag_next = tag_reg;
mask_fifo_rd_ptr_next = mask_fifo_rd_ptr_reg;
s_axis_rq_tready_next = 1'b0;
m_axis_rq_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}};
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
m_axis_rq_tvalid_int = 1'b0;
m_axis_rq_tlast_int = 1'b0;
m_axis_rq_tuser_int = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
m_axis_rq_tdata_int[1:0] = 2'b0; // address type
m_axis_rq_tdata_int[63:2] = tlp_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address
if (AXIS_PCIE_DATA_WIDTH > 64) begin
m_axis_rq_tdata_int[74:64] = dword_count_reg; // DWORD count
m_axis_rq_tdata_int[78:75] = REQ_MEM_WRITE; // request type - memory write
m_axis_rq_tdata_int[79] = 1'b0; // poisoned request
m_axis_rq_tdata_int[95:80] = requester_id;
m_axis_rq_tdata_int[103:96] = 8'd0; // tag
m_axis_rq_tdata_int[119:104] = 16'd0; // completer ID
m_axis_rq_tdata_int[120] = requester_id_enable; // requester ID enable
m_axis_rq_tdata_int[123:121] = 3'b000; // traffic class
m_axis_rq_tdata_int[126:124] = 3'b000; // attr
m_axis_rq_tdata_int[127] = 1'b0; // force ECRC
end
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_rq_tkeep_int = 8'b00001111;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_rq_tkeep_int = 4'b1111;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_rq_tkeep_int = 2'b11;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_rq_tuser_int[3:0] = dword_count_reg == 1 ? first_be & last_be : first_be; // first BE 0
m_axis_rq_tuser_int[7:4] = 4'd0; // first BE 1
m_axis_rq_tuser_int[11:8] = dword_count_reg == 1 ? 4'b0000 : last_be; // last BE 0
m_axis_rq_tuser_int[15:12] = 4'd0; // last BE 1
m_axis_rq_tuser_int[19:16] = 3'd0; // addr_offset
m_axis_rq_tuser_int[21:20] = 2'b01; // is_sop
m_axis_rq_tuser_int[23:22] = 2'd0; // is_sop0_ptr
m_axis_rq_tuser_int[25:24] = 2'd0; // is_sop1_ptr
m_axis_rq_tuser_int[27:26] = 2'b01; // is_eop
m_axis_rq_tuser_int[31:28] = 4'd3; // is_eop0_ptr
m_axis_rq_tuser_int[35:32] = 4'd0; // is_eop1_ptr
m_axis_rq_tuser_int[36] = 1'b0; // discontinue
m_axis_rq_tuser_int[38:37] = 2'b00; // tph_present
m_axis_rq_tuser_int[42:39] = 4'b0000; // tph_type
m_axis_rq_tuser_int[44:43] = 2'b00; // tph_indirect_tag_en
m_axis_rq_tuser_int[60:45] = 16'd0; // tph_st_tag
m_axis_rq_tuser_int[66:61] = 6'd0; // seq_num0
m_axis_rq_tuser_int[72:67] = 6'd0; // seq_num1
m_axis_rq_tuser_int[136:73] = 64'd0; // parity
end else begin
m_axis_rq_tuser_int[3:0] = dword_count_reg == 1 ? first_be & last_be : first_be; // first BE
m_axis_rq_tuser_int[7:4] = dword_count_reg == 1 ? 4'b0000 : last_be; // last BE
m_axis_rq_tuser_int[10:8] = 3'd0; // addr_offset
m_axis_rq_tuser_int[11] = 1'b0; // discontinue
m_axis_rq_tuser_int[12] = 1'b0; // tph_present
m_axis_rq_tuser_int[14:13] = 2'b00; // tph_type
m_axis_rq_tuser_int[15] = 1'b0; // tph_indirect_tag_en
m_axis_rq_tuser_int[23:16] = 8'd0; // tph_st_tag
m_axis_rq_tuser_int[27:24] = 4'd0; // seq_num
m_axis_rq_tuser_int[59:28] = 32'd0; // parity
end
// AXI read response processing and TLP generation
case (tlp_state_reg)
TLP_STATE_IDLE: begin
// idle state, wait for command
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
// pass through read request TLP
m_axis_rq_tdata_int = s_axis_rq_tdata;
m_axis_rq_tkeep_int = s_axis_rq_tkeep;
m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid;
m_axis_rq_tlast_int = s_axis_rq_tlast;
m_axis_rq_tuser_int = s_axis_rq_tuser;
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
tlp_addr_next = tlp_cmd_pcie_addr_reg;
tlp_len_next = tlp_cmd_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
cycle_count_next = tlp_cmd_cycle_count_reg;
last_cycle_next = tlp_cmd_cycle_count_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
tag_next = tlp_cmd_tag_reg;
if (s_axis_rq_tready && s_axis_rq_tvalid) begin
// pass through read request TLP
if (s_axis_rq_tlast) begin
tlp_state_next = TLP_STATE_IDLE;
end else begin
tlp_state_next = TLP_STATE_PASSTHROUGH;
end
end else if (tlp_cmd_valid_reg) begin
s_axis_rq_tready_next = 1'b0;
tlp_cmd_ready = 1'b1;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
tlp_state_next = TLP_STATE_IDLE;
end
end
TLP_STATE_HEADER_1: begin
// header 1 state, send TLP header
if (AXIS_PCIE_DATA_WIDTH >= 256) begin
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
if (!(ram_mask_reg & ~ram_rd_resp_valid) && ram_mask_valid_reg && m_axis_rq_tready_int_reg) begin
// transfer in read data
ram_rd_resp_ready_cmb = ram_mask_reg;
ram_mask_valid_next = 1'b0;
// update counters
dword_count_next = dword_count_reg - (AXIS_PCIE_KEEP_WIDTH-4);
cycle_count_next = cycle_count_reg - 1;
last_cycle_next = cycle_count_next == 0;
offset_next = offset_reg + AXIS_PCIE_DATA_WIDTH/8;
m_axis_rq_tdata_int[AXIS_PCIE_DATA_WIDTH-1:128] = {2{ram_rd_resp_data}} >> (SEG_COUNT*SEG_DATA_WIDTH-offset_reg*8 + 128);
m_axis_rq_tvalid_int = 1'b1;
if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH-4) begin
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}};
end else begin
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH-4 - dword_count_reg);
end
if (last_cycle_reg) begin
m_axis_rq_tlast_int = 1'b1;
if (last_tlp_reg) begin
m_axis_write_desc_status_tag_next = tag_reg;
m_axis_write_desc_status_valid_next = 1'b1;
end
// skip idle state if possible
tlp_addr_next = tlp_cmd_pcie_addr_reg;
tlp_len_next = tlp_cmd_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
cycle_count_next = tlp_cmd_cycle_count_reg;
last_cycle_next = tlp_cmd_cycle_count_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
tag_next = tlp_cmd_tag_reg;
if (tlp_cmd_valid_reg && !s_axis_rq_tvalid) begin
tlp_cmd_ready = 1'b1;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end else begin
tlp_state_next = TLP_STATE_HEADER_1;
end
end else begin
if (m_axis_rq_tready_int_reg) begin
m_axis_rq_tvalid_int = 1'b1;
if (AXIS_PCIE_DATA_WIDTH == 128) begin
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
tlp_state_next = TLP_STATE_HEADER_2;
end
end else begin
tlp_state_next = TLP_STATE_HEADER_1;
end
end
end
TLP_STATE_HEADER_2: begin
// header 2 state, send rest of TLP header (64 bit interface only)
if (m_axis_rq_tready_int_reg) begin
m_axis_rq_tdata_int[10:0] = dword_count_reg; // DWORD count
m_axis_rq_tdata_int[14:11] = 4'b0001; // request type - memory write
m_axis_rq_tdata_int[15] = 1'b0; // poisoned request
m_axis_rq_tdata_int[31:16] = requester_id;
m_axis_rq_tdata_int[39:32] = 8'd0; // tag
m_axis_rq_tdata_int[55:40] = 16'd0; // completer ID
m_axis_rq_tdata_int[56] = requester_id_enable; // requester ID enable
m_axis_rq_tdata_int[59:57] = 3'b000; // traffic class
m_axis_rq_tdata_int[62:60] = 3'b000; // attr
m_axis_rq_tdata_int[63] = 1'b0; // force ECRC
m_axis_rq_tvalid_int = 1'b1;
m_axis_rq_tkeep_int = 2'b11;
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
tlp_state_next = TLP_STATE_HEADER_2;
end
end
TLP_STATE_TRANSFER: begin
// transfer state, transfer data
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
if (!(ram_mask_reg & ~ram_rd_resp_valid) && ram_mask_valid_reg && m_axis_rq_tready_int_reg) begin
// transfer in read data
ram_rd_resp_ready_cmb = ram_mask_reg;
ram_mask_valid_next = 1'b0;
// update counters
dword_count_next = dword_count_reg - AXIS_PCIE_KEEP_WIDTH;
cycle_count_next = cycle_count_reg - 1;
last_cycle_next = cycle_count_next == 0;
offset_next = offset_reg + AXIS_PCIE_DATA_WIDTH/8;
m_axis_rq_tdata_int = {2{ram_rd_resp_data}} >> (SEG_COUNT*SEG_DATA_WIDTH-offset_reg*8);
m_axis_rq_tvalid_int = 1'b1;
if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH) begin
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}};
end else begin
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH - dword_count_reg);
end
if (last_cycle_reg) begin
// no more data to transfer, finish operation
m_axis_rq_tlast_int = 1'b1;
if (last_tlp_reg) begin
m_axis_write_desc_status_tag_next = tag_reg;
m_axis_write_desc_status_valid_next = 1'b1;
end
// skip idle state if possible
tlp_addr_next = tlp_cmd_pcie_addr_reg;
tlp_len_next = tlp_cmd_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
cycle_count_next = tlp_cmd_cycle_count_reg;
last_cycle_next = tlp_cmd_cycle_count_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
tag_next = tlp_cmd_tag_reg;
if (tlp_cmd_valid_reg && !s_axis_rq_tvalid) begin
tlp_cmd_ready = 1'b1;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end
TLP_STATE_PASSTHROUGH: begin
// passthrough state, pass through read request TLP
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
// pass through read request TLP
m_axis_rq_tdata_int = s_axis_rq_tdata;
m_axis_rq_tkeep_int = s_axis_rq_tkeep;
m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid;
m_axis_rq_tlast_int = s_axis_rq_tlast;
m_axis_rq_tuser_int = s_axis_rq_tuser;
if (s_axis_rq_tready && s_axis_rq_tvalid && s_axis_rq_tlast) begin
tlp_state_next = TLP_STATE_IDLE;
end else begin
tlp_state_next = TLP_STATE_PASSTHROUGH;
end
end
endcase
if (!ram_mask_valid_next) begin
if (mask_fifo_rd_ptr_reg != mask_fifo_wr_ptr_reg) begin
ram_mask_next = mask_fifo_mask[mask_fifo_rd_ptr_reg[MASK_FIFO_ADDR_WIDTH-1:0]];
ram_mask_valid_next = 1'b1;
mask_fifo_rd_ptr_next = mask_fifo_rd_ptr_reg+1;
end
end
end
always @(posedge clk) begin
read_state_reg <= read_state_next;
tlp_state_reg <= tlp_state_next;
ram_sel_reg <= ram_sel_next;
pcie_addr_reg <= pcie_addr_next;
read_addr_reg <= read_addr_next;
op_count_reg <= op_count_next;
tr_count_reg <= tr_count_next;
tlp_count_reg <= tlp_count_next;
read_ram_mask_reg <= read_ram_mask_next;
read_ram_mask_0_reg <= read_ram_mask_0_next;
read_ram_mask_1_reg <= read_ram_mask_1_next;
ram_wrap_reg <= ram_wrap_next;
read_cycle_count_reg <= read_cycle_count_next;
read_last_cycle_reg <= read_last_cycle_next;
cycle_byte_count_reg <= cycle_byte_count_next;
start_offset_reg <= start_offset_next;
end_offset_reg <= end_offset_next;
tlp_addr_reg <= tlp_addr_next;
tlp_len_reg <= tlp_len_next;
dword_count_reg <= dword_count_next;
offset_reg <= offset_next;
ram_mask_reg <= ram_mask_next;
ram_mask_valid_reg <= ram_mask_valid_next;
cycle_count_reg <= cycle_count_next;
last_cycle_reg <= last_cycle_next;
last_tlp_reg <= last_tlp_next;
tag_reg <= tag_next;
tlp_cmd_pcie_addr_reg <= tlp_cmd_pcie_addr_next;
tlp_cmd_len_reg <= tlp_cmd_len_next;
tlp_cmd_dword_len_reg <= tlp_cmd_dword_len_next;
tlp_cmd_cycle_count_reg <= tlp_cmd_cycle_count_next;
tlp_cmd_offset_reg <= tlp_cmd_offset_next;
tlp_cmd_tag_reg <= tlp_cmd_tag_next;
tlp_cmd_last_reg <= tlp_cmd_last_next;
tlp_cmd_valid_reg <= tlp_cmd_valid_next;
s_axis_rq_tready_reg <= s_axis_rq_tready_next;
s_axis_write_desc_ready_reg <= s_axis_write_desc_ready_next;
m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next;
m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next;
ram_rd_cmd_sel_reg <= ram_rd_cmd_sel_next;
ram_rd_cmd_addr_reg <= ram_rd_cmd_addr_next;
ram_rd_cmd_valid_reg <= ram_rd_cmd_valid_next;
max_payload_size_dw_reg <= 11'd32 << (max_payload_size > 5 ? 5 : max_payload_size);
if (mask_fifo_we) begin
mask_fifo_mask[mask_fifo_wr_ptr_reg[MASK_FIFO_ADDR_WIDTH-1:0]] <= mask_fifo_wr_mask;
mask_fifo_wr_ptr_reg <= mask_fifo_wr_ptr_reg + 1;
end
mask_fifo_rd_ptr_reg <= mask_fifo_rd_ptr_next;
if (rst) begin
read_state_reg <= READ_STATE_IDLE;
tlp_state_reg <= TLP_STATE_IDLE;
tlp_cmd_valid_reg <= 1'b0;
ram_mask_valid_reg <= 1'b0;
s_axis_rq_tready_reg <= 1'b0;
s_axis_write_desc_ready_reg <= 1'b0;
m_axis_write_desc_status_valid_reg <= 1'b0;
ram_rd_cmd_valid_reg <= {SEG_COUNT{1'b0}};
end
end
// output datapath logic (PCIe TLP)
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next;
reg m_axis_rq_tlast_reg = 1'b0;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next;
reg temp_m_axis_rq_tlast_reg = 1'b0;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] temp_m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
// datapath control
reg store_axis_rq_int_to_output;
reg store_axis_rq_int_to_temp;
reg store_axis_rq_temp_to_output;
assign m_axis_rq_tdata = m_axis_rq_tdata_reg;
assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg;
assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg;
assign m_axis_rq_tlast = m_axis_rq_tlast_reg;
assign m_axis_rq_tuser = m_axis_rq_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
store_axis_rq_int_to_output = 1'b0;
store_axis_rq_int_to_temp = 1'b0;
store_axis_rq_temp_to_output = 1'b0;
if (m_axis_rq_tready_int_reg) begin
// input is ready
if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_temp = 1'b1;
end
end else if (m_axis_rq_tready) begin
// input is not ready, but output is ready
m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = 1'b0;
store_axis_rq_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_rq_tvalid_reg <= 1'b0;
m_axis_rq_tready_int_reg <= 1'b0;
temp_m_axis_rq_tvalid_reg <= 1'b0;
end else begin
m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next;
m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early;
temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next;
end
// datapath
if (store_axis_rq_int_to_output) begin
m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end else if (store_axis_rq_temp_to_output) begin
m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg;
m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg;
m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg;
m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg;
end
if (store_axis_rq_int_to_temp) begin
temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end
end
endmodule