mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
70dc92c24e
Signed-off-by: Alex Forencich <alex@alexforencich.com>
544 lines
22 KiB
Verilog
544 lines
22 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2021 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`resetall
|
|
`timescale 1ns / 1ps
|
|
`default_nettype none
|
|
|
|
/*
|
|
* PCIe AXI Master (write)
|
|
*/
|
|
module pcie_axi_master_wr #
|
|
(
|
|
// TLP data width
|
|
parameter TLP_DATA_WIDTH = 256,
|
|
// TLP header width
|
|
parameter TLP_HDR_WIDTH = 128,
|
|
// TLP segment count
|
|
parameter TLP_SEG_COUNT = 1,
|
|
// Width of AXI data bus in bits
|
|
parameter AXI_DATA_WIDTH = TLP_DATA_WIDTH,
|
|
// Width of AXI address bus in bits
|
|
parameter AXI_ADDR_WIDTH = 64,
|
|
// Width of AXI wstrb (width of data bus in words)
|
|
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
|
|
// Width of AXI ID signal
|
|
parameter AXI_ID_WIDTH = 8,
|
|
// Maximum AXI burst length to generate
|
|
parameter AXI_MAX_BURST_LEN = 256,
|
|
// Force 64 bit address
|
|
parameter TLP_FORCE_64_BIT_ADDR = 0
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* TLP input (request)
|
|
*/
|
|
input wire [TLP_DATA_WIDTH-1:0] rx_req_tlp_data,
|
|
input wire [TLP_SEG_COUNT*TLP_HDR_WIDTH-1:0] rx_req_tlp_hdr,
|
|
input wire [TLP_SEG_COUNT-1:0] rx_req_tlp_valid,
|
|
input wire [TLP_SEG_COUNT-1:0] rx_req_tlp_sop,
|
|
input wire [TLP_SEG_COUNT-1:0] rx_req_tlp_eop,
|
|
output wire rx_req_tlp_ready,
|
|
|
|
/*
|
|
* AXI Master output
|
|
*/
|
|
output wire [AXI_ID_WIDTH-1:0] m_axi_awid,
|
|
output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
|
|
output wire [7:0] m_axi_awlen,
|
|
output wire [2:0] m_axi_awsize,
|
|
output wire [1:0] m_axi_awburst,
|
|
output wire m_axi_awlock,
|
|
output wire [3:0] m_axi_awcache,
|
|
output wire [2:0] m_axi_awprot,
|
|
output wire m_axi_awvalid,
|
|
input wire m_axi_awready,
|
|
output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata,
|
|
output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb,
|
|
output wire m_axi_wlast,
|
|
output wire m_axi_wvalid,
|
|
input wire m_axi_wready,
|
|
input wire [AXI_ID_WIDTH-1:0] m_axi_bid,
|
|
input wire [1:0] m_axi_bresp,
|
|
input wire m_axi_bvalid,
|
|
output wire m_axi_bready,
|
|
|
|
/*
|
|
* Status
|
|
*/
|
|
output wire status_error_uncor
|
|
);
|
|
|
|
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
|
|
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
|
|
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
|
|
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
|
|
|
|
parameter TLP_DATA_WIDTH_BYTES = TLP_DATA_WIDTH/8;
|
|
parameter TLP_DATA_WIDTH_DWORDS = TLP_DATA_WIDTH/32;
|
|
|
|
parameter OFFSET_WIDTH = $clog2(TLP_DATA_WIDTH_DWORDS);
|
|
|
|
parameter OUTPUT_FIFO_ADDR_WIDTH = 5;
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (TLP_SEG_COUNT != 1) begin
|
|
$error("Error: TLP segment count must be 1 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (TLP_HDR_WIDTH != 128) begin
|
|
$error("Error: TLP segment header width must be 128 (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_DATA_WIDTH != TLP_DATA_WIDTH) begin
|
|
$error("Error: AXI interface width must match PCIe interface width (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
|
|
$error("Error: AXI interface requires byte (8-bit) granularity (instance %m)");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
|
|
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
localparam [2:0]
|
|
TLP_FMT_3DW = 3'b000,
|
|
TLP_FMT_4DW = 3'b001,
|
|
TLP_FMT_3DW_DATA = 3'b010,
|
|
TLP_FMT_4DW_DATA = 3'b011,
|
|
TLP_FMT_PREFIX = 3'b100;
|
|
|
|
localparam [1:0]
|
|
STATE_IDLE = 2'd0,
|
|
STATE_TRANSFER = 2'd1,
|
|
STATE_WAIT_END = 2'd2;
|
|
|
|
reg [1:0] state_reg = STATE_IDLE, state_next;
|
|
|
|
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
|
|
reg [10:0] op_dword_count_reg = 11'd0, op_dword_count_next;
|
|
reg [10:0] tr_dword_count_reg = 11'd0, tr_dword_count_next;
|
|
reg [12:0] input_cycle_count_reg = 13'd0, input_cycle_count_next;
|
|
reg [12:0] output_cycle_count_reg = 13'd0, output_cycle_count_next;
|
|
reg input_active_reg = 1'b0, input_active_next;
|
|
reg first_cycle_reg = 1'b0, first_cycle_next;
|
|
reg last_cycle_reg = 1'b0, last_cycle_next;
|
|
|
|
reg [3:0] type_reg = 4'd0, type_next;
|
|
reg [3:0] first_be_reg = 4'd0, first_be_next;
|
|
reg [3:0] last_be_reg = 4'd0, last_be_next;
|
|
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
|
|
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
|
|
|
|
reg [2:0] rx_req_tlp_hdr_fmt;
|
|
reg [4:0] rx_req_tlp_hdr_type;
|
|
reg [2:0] rx_req_tlp_hdr_tc;
|
|
reg rx_req_tlp_hdr_ln;
|
|
reg rx_req_tlp_hdr_th;
|
|
reg rx_req_tlp_hdr_td;
|
|
reg rx_req_tlp_hdr_ep;
|
|
reg [2:0] rx_req_tlp_hdr_attr;
|
|
reg [1:0] rx_req_tlp_hdr_at;
|
|
reg [10:0] rx_req_tlp_hdr_length;
|
|
reg [15:0] rx_req_tlp_hdr_requester_id;
|
|
reg [9:0] rx_req_tlp_hdr_tag;
|
|
reg [7:0] rx_req_tlp_hdr_last_be;
|
|
reg [7:0] rx_req_tlp_hdr_first_be;
|
|
reg [63:0] rx_req_tlp_hdr_addr;
|
|
reg [1:0] rx_req_tlp_hdr_ph;
|
|
|
|
reg rx_req_tlp_ready_reg = 1'b0, rx_req_tlp_ready_next;
|
|
|
|
reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
|
|
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
|
|
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
|
|
|
|
reg [TLP_DATA_WIDTH-1:0] save_tlp_data_reg = {TLP_DATA_WIDTH{1'b0}};
|
|
|
|
wire [TLP_DATA_WIDTH-1:0] shift_tlp_data = {rx_req_tlp_data, save_tlp_data_reg} >> ((TLP_DATA_WIDTH_DWORDS-offset_reg)*32);
|
|
|
|
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
|
|
|
|
// internal datapath
|
|
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int;
|
|
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int;
|
|
reg m_axi_wvalid_int;
|
|
reg m_axi_wlast_int;
|
|
wire m_axi_wready_int;
|
|
|
|
assign rx_req_tlp_ready = rx_req_tlp_ready_reg;
|
|
|
|
assign m_axi_awid = {AXI_ID_WIDTH{1'b0}};
|
|
assign m_axi_awaddr = m_axi_awaddr_reg;
|
|
assign m_axi_awlen = m_axi_awlen_reg;
|
|
assign m_axi_awsize = $clog2(AXI_STRB_WIDTH);
|
|
assign m_axi_awburst = 2'b01;
|
|
assign m_axi_awlock = 1'b0;
|
|
assign m_axi_awcache = 4'b0011;
|
|
assign m_axi_awprot = 3'b010;
|
|
assign m_axi_awvalid = m_axi_awvalid_reg;
|
|
|
|
assign m_axi_bready = 1'b1;
|
|
|
|
assign status_error_uncor = status_error_uncor_reg;
|
|
|
|
always @* begin
|
|
state_next = STATE_IDLE;
|
|
|
|
type_next = type_reg;
|
|
axi_addr_next = axi_addr_reg;
|
|
op_dword_count_next = op_dword_count_reg;
|
|
tr_dword_count_next = tr_dword_count_reg;
|
|
input_cycle_count_next = input_cycle_count_reg;
|
|
output_cycle_count_next = output_cycle_count_reg;
|
|
input_active_next = input_active_reg;
|
|
first_cycle_next = first_cycle_reg;
|
|
last_cycle_next = last_cycle_reg;
|
|
first_be_next = first_be_reg;
|
|
last_be_next = last_be_reg;
|
|
offset_next = offset_reg;
|
|
last_cycle_offset_next = last_cycle_offset_reg;
|
|
|
|
rx_req_tlp_ready_next = 1'b0;
|
|
|
|
m_axi_awaddr_next = m_axi_awaddr_reg;
|
|
m_axi_awlen_next = m_axi_awlen_reg;
|
|
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
|
|
|
|
m_axi_wdata_int = shift_tlp_data;
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
|
|
m_axi_wvalid_int = 1'b0;
|
|
m_axi_wlast_int = 1'b0;
|
|
|
|
status_error_uncor_next = 1'b0;
|
|
|
|
// TLP header parsing
|
|
// DW 0
|
|
rx_req_tlp_hdr_fmt = rx_req_tlp_hdr[127:125]; // fmt
|
|
rx_req_tlp_hdr_type = rx_req_tlp_hdr[124:120]; // type
|
|
rx_req_tlp_hdr_tag[9] = rx_req_tlp_hdr[119]; // T9
|
|
rx_req_tlp_hdr_tc = rx_req_tlp_hdr[118:116]; // TC
|
|
rx_req_tlp_hdr_tag[8] = rx_req_tlp_hdr[115]; // T8
|
|
rx_req_tlp_hdr_attr[2] = rx_req_tlp_hdr[114]; // attr
|
|
rx_req_tlp_hdr_ln = rx_req_tlp_hdr[113]; // LN
|
|
rx_req_tlp_hdr_th = rx_req_tlp_hdr[112]; // TH
|
|
rx_req_tlp_hdr_td = rx_req_tlp_hdr[111]; // TD
|
|
rx_req_tlp_hdr_ep = rx_req_tlp_hdr[110]; // EP
|
|
rx_req_tlp_hdr_attr[1:0] = rx_req_tlp_hdr[109:108]; // attr
|
|
rx_req_tlp_hdr_at = rx_req_tlp_hdr[107:106]; // AT
|
|
rx_req_tlp_hdr_length = {rx_req_tlp_hdr[105:96] == 0, rx_req_tlp_hdr[105:96]}; // length
|
|
// DW 1
|
|
rx_req_tlp_hdr_requester_id = rx_req_tlp_hdr[95:80]; // requester ID
|
|
rx_req_tlp_hdr_tag[7:0] = rx_req_tlp_hdr[79:72]; // tag
|
|
rx_req_tlp_hdr_last_be = rx_req_tlp_hdr[71:68]; // last BE
|
|
rx_req_tlp_hdr_first_be = rx_req_tlp_hdr[67:64]; // first BE
|
|
if (rx_req_tlp_hdr_fmt[0] || TLP_FORCE_64_BIT_ADDR) begin
|
|
// 4 DW (64-bit address)
|
|
// DW 2+3
|
|
rx_req_tlp_hdr_addr = {rx_req_tlp_hdr[63:2], 2'b00}; // addr
|
|
rx_req_tlp_hdr_ph = rx_req_tlp_hdr[1:0]; // PH
|
|
end else begin
|
|
// 3 DW (32-bit address)
|
|
// DW 2
|
|
rx_req_tlp_hdr_addr = {rx_req_tlp_hdr[63:34], 2'b00}; // addr
|
|
rx_req_tlp_hdr_ph = rx_req_tlp_hdr[33:32]; // PH
|
|
end
|
|
|
|
case (state_reg)
|
|
STATE_IDLE: begin
|
|
// idle state, wait for completion request
|
|
rx_req_tlp_ready_next = (!m_axi_awvalid_reg || m_axi_awready) && m_axi_wready_int;
|
|
|
|
axi_addr_next = rx_req_tlp_hdr_addr;
|
|
op_dword_count_next = rx_req_tlp_hdr_length;
|
|
first_be_next = rx_req_tlp_hdr_first_be;
|
|
last_be_next = op_dword_count_next == 1 ? rx_req_tlp_hdr_first_be : rx_req_tlp_hdr_last_be;
|
|
|
|
if (rx_req_tlp_ready && rx_req_tlp_valid && rx_req_tlp_sop) begin
|
|
|
|
if (op_dword_count_next <= AXI_MAX_BURST_SIZE/4) begin
|
|
// packet smaller than max burst size
|
|
// assumed to not cross 4k boundary, send one request
|
|
tr_dword_count_next = op_dword_count_next;
|
|
m_axi_awlen_next = (tr_dword_count_next + axi_addr_next[OFFSET_WIDTH+2-1:2] - 1) >> (AXI_BURST_SIZE-2);
|
|
end else begin
|
|
// packet larger than max burst size
|
|
// assumed to not cross 4k boundary, aligned split on burst size
|
|
tr_dword_count_next = AXI_MAX_BURST_SIZE/4 - axi_addr_next[OFFSET_WIDTH+2-1:2];
|
|
m_axi_awlen_next = (tr_dword_count_next - 1) >> (AXI_BURST_SIZE-2);
|
|
end
|
|
|
|
m_axi_awaddr_next = axi_addr_next;
|
|
|
|
// required DWORD shift to place first DWORD from the TLP payload into proper position on AXI interface
|
|
offset_next = axi_addr_next >> 2;
|
|
first_cycle_next = 1'b1;
|
|
|
|
// number of bus transfers in TLP, DOWRD count divided by bus width in DWORDS
|
|
input_cycle_count_next = (tr_dword_count_next - 1) >> (AXI_BURST_SIZE-2);
|
|
// number of bus transfers to AXI, DWORD count plus DWORD offset, divided by bus width in DWORDS
|
|
output_cycle_count_next = m_axi_awlen_next;
|
|
last_cycle_offset_next = offset_next + tr_dword_count_next;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
input_active_next = input_cycle_count_next != 0;
|
|
|
|
axi_addr_next = axi_addr_next + (tr_dword_count_next << 2);
|
|
op_dword_count_next = op_dword_count_next - tr_dword_count_next;
|
|
|
|
if (rx_req_tlp_hdr_fmt[1] && rx_req_tlp_hdr_type == 5'b00000 && !rx_req_tlp_hdr_ep) begin
|
|
// write request
|
|
|
|
m_axi_awvalid_next = 1'b1;
|
|
|
|
rx_req_tlp_ready_next = 1'b0;
|
|
state_next = STATE_TRANSFER;
|
|
end else begin
|
|
// other request
|
|
status_error_uncor_next = 1'b1;
|
|
|
|
if (rx_req_tlp_eop) begin
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
rx_req_tlp_ready_next = 1'b1;
|
|
state_next = STATE_WAIT_END;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
STATE_TRANSFER: begin
|
|
// transfer state, transfer data
|
|
rx_req_tlp_ready_next = m_axi_wready_int && input_active_reg && !first_cycle_reg;
|
|
|
|
if ((rx_req_tlp_ready && rx_req_tlp_valid) || !input_active_reg || first_cycle_reg) begin
|
|
// transfer data
|
|
|
|
if (first_cycle_reg) begin
|
|
m_axi_wdata_int = {save_tlp_data_reg, {TLP_DATA_WIDTH{1'b0}}} >> ((TLP_DATA_WIDTH_DWORDS-offset_reg)*32);
|
|
rx_req_tlp_ready_next = m_axi_wready_int && input_active_reg;
|
|
end else begin
|
|
m_axi_wdata_int = shift_tlp_data;
|
|
end
|
|
// generate strb signal
|
|
if (first_cycle_reg) begin
|
|
m_axi_wstrb_int = {{AXI_STRB_WIDTH-4{1'b1}}, first_be_reg} << (offset_reg*4);
|
|
end else begin
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
|
|
end
|
|
|
|
// update cycle counters
|
|
if (input_active_reg && !first_cycle_reg) begin
|
|
input_cycle_count_next = input_cycle_count_reg - 1;
|
|
input_active_next = input_cycle_count_next != 0;
|
|
end
|
|
output_cycle_count_next = output_cycle_count_reg - 1;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
|
|
// modify strb signal at end of transfer
|
|
if (last_cycle_reg) begin
|
|
if (op_dword_count_reg == 0) begin
|
|
if (last_cycle_offset_reg > 0) begin
|
|
m_axi_wstrb_int = m_axi_wstrb_int & {last_be_reg, {AXI_STRB_WIDTH-4{1'b1}}} >> (AXI_STRB_WIDTH-last_cycle_offset_reg*4);
|
|
end else begin
|
|
m_axi_wstrb_int = m_axi_wstrb_int & {last_be_reg, {AXI_STRB_WIDTH-4{1'b1}}};
|
|
end
|
|
end
|
|
m_axi_wlast_int = 1'b1;
|
|
end
|
|
m_axi_wvalid_int = 1'b1;
|
|
first_cycle_next = 1'b0;
|
|
|
|
if (!last_cycle_reg) begin
|
|
// more data to transfer
|
|
rx_req_tlp_ready_next = m_axi_wready_int && input_active_next;
|
|
state_next = STATE_TRANSFER;
|
|
end else if (op_dword_count_reg > 0) begin
|
|
// current transfer done, but operation not finished yet
|
|
if (op_dword_count_reg <= AXI_MAX_BURST_SIZE/4) begin
|
|
// packet smaller than max burst size
|
|
// assumed to not cross 4k boundary, send one request
|
|
tr_dword_count_next = op_dword_count_reg;
|
|
m_axi_awlen_next = (tr_dword_count_next + axi_addr_reg[OFFSET_WIDTH+2-1:2] - 1) >> (AXI_BURST_SIZE-2);
|
|
end else begin
|
|
// packet larger than max burst size
|
|
// assumed to not cross 4k boundary, aligned split on burst size
|
|
tr_dword_count_next = AXI_MAX_BURST_SIZE/4 - axi_addr_reg[OFFSET_WIDTH+2-1:2];
|
|
m_axi_awlen_next = (tr_dword_count_next - 1) >> (AXI_BURST_SIZE-2);
|
|
end
|
|
|
|
m_axi_awaddr_next = axi_addr_reg;
|
|
|
|
// number of bus transfers in TLP, DOWRD count minus payload start DWORD offset, divided by bus width in DWORDS
|
|
input_cycle_count_next = (tr_dword_count_next - offset_reg - 1) >> (AXI_BURST_SIZE-2);
|
|
// number of bus transfers to AXI, DWORD count plus DWORD offset, divided by bus width in DWORDS
|
|
output_cycle_count_next = m_axi_awlen_next;
|
|
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH+2-1:2] + tr_dword_count_next;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
input_active_next = input_cycle_count_next != 0;
|
|
|
|
axi_addr_next = axi_addr_reg + (tr_dword_count_next << 2);
|
|
op_dword_count_next = op_dword_count_reg - tr_dword_count_next;
|
|
|
|
m_axi_awvalid_next = 1'b1;
|
|
rx_req_tlp_ready_next = m_axi_wready_int && input_active_next;
|
|
state_next = STATE_TRANSFER;
|
|
end else begin
|
|
rx_req_tlp_ready_next = (!m_axi_awvalid_reg || m_axi_awready) && m_axi_wready_int;
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end else begin
|
|
state_next = STATE_TRANSFER;
|
|
end
|
|
end
|
|
STATE_WAIT_END: begin
|
|
// wait end state, wait for end of TLP
|
|
rx_req_tlp_ready_next = 1'b1;
|
|
|
|
if (rx_req_tlp_ready && rx_req_tlp_valid) begin
|
|
if (rx_req_tlp_eop) begin
|
|
|
|
rx_req_tlp_ready_next = (!m_axi_awvalid_reg || m_axi_awready) && m_axi_wready_int;
|
|
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
state_next = STATE_WAIT_END;
|
|
end
|
|
end else begin
|
|
state_next = STATE_WAIT_END;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
state_reg <= state_next;
|
|
|
|
axi_addr_reg <= axi_addr_next;
|
|
op_dword_count_reg <= op_dword_count_next;
|
|
tr_dword_count_reg <= tr_dword_count_next;
|
|
input_cycle_count_reg <= input_cycle_count_next;
|
|
output_cycle_count_reg <= output_cycle_count_next;
|
|
input_active_reg <= input_active_next;
|
|
first_cycle_reg <= first_cycle_next;
|
|
last_cycle_reg <= last_cycle_next;
|
|
|
|
type_reg <= type_next;
|
|
first_be_reg <= first_be_next;
|
|
last_be_reg <= last_be_next;
|
|
offset_reg <= offset_next;
|
|
last_cycle_offset_reg <= last_cycle_offset_next;
|
|
|
|
rx_req_tlp_ready_reg <= rx_req_tlp_ready_next;
|
|
|
|
m_axi_awaddr_reg <= m_axi_awaddr_next;
|
|
m_axi_awlen_reg <= m_axi_awlen_next;
|
|
m_axi_awvalid_reg <= m_axi_awvalid_next;
|
|
|
|
status_error_uncor_reg <= status_error_uncor_next;
|
|
|
|
if (rx_req_tlp_ready && rx_req_tlp_valid) begin
|
|
save_tlp_data_reg <= rx_req_tlp_data;
|
|
end
|
|
|
|
if (rst) begin
|
|
state_reg <= STATE_IDLE;
|
|
|
|
rx_req_tlp_ready_reg <= 1'b0;
|
|
|
|
m_axi_awvalid_reg <= 1'b0;
|
|
|
|
status_error_uncor_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
// output datapath logic (AXI write data)
|
|
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
|
|
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
|
|
reg m_axi_wlast_reg = 1'b0;
|
|
reg m_axi_wvalid_reg = 1'b0;
|
|
|
|
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0;
|
|
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0;
|
|
reg out_fifo_half_full_reg = 1'b0;
|
|
|
|
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}});
|
|
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
|
|
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [AXI_DATA_WIDTH-1:0] out_fifo_wdata[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg [AXI_STRB_WIDTH-1:0] out_fifo_wstrb[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
|
|
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
|
|
reg out_fifo_wlast[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
|
|
|
|
assign m_axi_wready_int = !out_fifo_half_full_reg;
|
|
|
|
assign m_axi_wdata = m_axi_wdata_reg;
|
|
assign m_axi_wstrb = m_axi_wstrb_reg;
|
|
assign m_axi_wvalid = m_axi_wvalid_reg;
|
|
assign m_axi_wlast = m_axi_wlast_reg;
|
|
|
|
always @(posedge clk) begin
|
|
m_axi_wvalid_reg <= m_axi_wvalid_reg && !m_axi_wready;
|
|
|
|
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1);
|
|
|
|
if (!out_fifo_full && m_axi_wvalid_int) begin
|
|
out_fifo_wdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axi_wdata_int;
|
|
out_fifo_wstrb[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axi_wstrb_int;
|
|
out_fifo_wlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axi_wlast_int;
|
|
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
|
|
end
|
|
|
|
if (!out_fifo_empty && (!m_axi_wvalid_reg || m_axi_wready)) begin
|
|
m_axi_wdata_reg <= out_fifo_wdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
|
|
m_axi_wstrb_reg <= out_fifo_wstrb[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
|
|
m_axi_wlast_reg <= out_fifo_wlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
|
|
m_axi_wvalid_reg <= 1'b1;
|
|
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
|
|
end
|
|
|
|
if (rst) begin
|
|
out_fifo_wr_ptr_reg <= 0;
|
|
out_fifo_rd_ptr_reg <= 0;
|
|
m_axi_wvalid_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
`resetall
|