1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/pcie_us_axil_master.v
Alex Forencich ae1f4a9a22 Rewrite early ready condition
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-05-15 19:25:30 -07:00

934 lines
39 KiB
Verilog

/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Ultrascale PCIe AXI Lite Master
*/
module pcie_us_axil_master #
(
// Width of PCIe AXI stream interfaces in bits
parameter AXIS_PCIE_DATA_WIDTH = 256,
// PCIe AXI stream tkeep signal width (words per cycle)
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
// PCIe AXI stream CQ tuser signal width
parameter AXIS_PCIE_CQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 85 : 183,
// PCIe AXI stream CC tuser signal width
parameter AXIS_PCIE_CC_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 33 : 81,
// Width of AXI lite data bus in bits
parameter AXI_DATA_WIDTH = 32,
// Width of AXI lite address bus in bits
parameter AXI_ADDR_WIDTH = 64,
// Width of AXI lite wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Enable parity
parameter ENABLE_PARITY = 0
)
(
input wire clk,
input wire rst,
/*
* AXI input (CQ)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_cq_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_cq_tkeep,
input wire s_axis_cq_tvalid,
output wire s_axis_cq_tready,
input wire s_axis_cq_tlast,
input wire [AXIS_PCIE_CQ_USER_WIDTH-1:0] s_axis_cq_tuser,
/*
* AXI output (CC)
*/
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cc_tdata,
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cc_tkeep,
output wire m_axis_cc_tvalid,
input wire m_axis_cc_tready,
output wire m_axis_cc_tlast,
output wire [AXIS_PCIE_CC_USER_WIDTH-1:0] m_axis_cc_tuser,
/*
* AXI Lite Master output
*/
output wire [AXI_ADDR_WIDTH-1:0] m_axil_awaddr,
output wire [2:0] m_axil_awprot,
output wire m_axil_awvalid,
input wire m_axil_awready,
output wire [AXI_DATA_WIDTH-1:0] m_axil_wdata,
output wire [AXI_STRB_WIDTH-1:0] m_axil_wstrb,
output wire m_axil_wvalid,
input wire m_axil_wready,
input wire [1:0] m_axil_bresp,
input wire m_axil_bvalid,
output wire m_axil_bready,
output wire [AXI_ADDR_WIDTH-1:0] m_axil_araddr,
output wire [2:0] m_axil_arprot,
output wire m_axil_arvalid,
input wire m_axil_arready,
input wire [AXI_DATA_WIDTH-1:0] m_axil_rdata,
input wire [1:0] m_axil_rresp,
input wire m_axil_rvalid,
output wire m_axil_rready,
/*
* Configuration
*/
input wire [15:0] completer_id,
input wire completer_id_enable,
/*
* Status
*/
output wire status_error_cor,
output wire status_error_uncor
);
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
$error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
if (AXIS_PCIE_CQ_USER_WIDTH != 183) begin
$error("Error: PCIe CQ tuser width must be 183 (instance %m)");
$finish;
end
if (AXIS_PCIE_CC_USER_WIDTH != 81) begin
$error("Error: PCIe CC tuser width must be 81 (instance %m)");
$finish;
end
end else begin
if (AXIS_PCIE_CQ_USER_WIDTH != 85 && AXIS_PCIE_CQ_USER_WIDTH != 88) begin
$error("Error: PCIe CQ tuser width must be 85 or 88 (instance %m)");
$finish;
end
if (AXIS_PCIE_CC_USER_WIDTH != 33) begin
$error("Error: PCIe CC tuser width must be 33 (instance %m)");
$finish;
end
end
if (AXI_DATA_WIDTH != 32) begin
$error("Error: AXI interface width must be 32 (instance %m)");
$finish;
end
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
$error("Error: AXI interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
end
localparam [3:0]
REQ_MEM_READ = 4'b0000,
REQ_MEM_WRITE = 4'b0001,
REQ_IO_READ = 4'b0010,
REQ_IO_WRITE = 4'b0011,
REQ_MEM_FETCH_ADD = 4'b0100,
REQ_MEM_SWAP = 4'b0101,
REQ_MEM_CAS = 4'b0110,
REQ_MEM_READ_LOCKED = 4'b0111,
REQ_CFG_READ_0 = 4'b1000,
REQ_CFG_READ_1 = 4'b1001,
REQ_CFG_WRITE_0 = 4'b1010,
REQ_CFG_WRITE_1 = 4'b1011,
REQ_MSG = 4'b1100,
REQ_MSG_VENDOR = 4'b1101,
REQ_MSG_ATS = 4'b1110;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_HEADER = 3'd1,
STATE_READ = 3'd2,
STATE_WRITE_1 = 3'd3,
STATE_WRITE_2 = 3'd4,
STATE_WAIT_END = 3'd5,
STATE_CPL_1 = 3'd6,
STATE_CPL_2 = 3'd7;
reg [2:0] state_reg = STATE_IDLE, state_next;
reg [10:0] dword_count_reg = 11'd0, dword_count_next;
reg [3:0] type_reg = 4'd0, type_next;
reg [2:0] status_reg = 3'b000, status_next;
reg [15:0] requester_id_reg = 16'd0, requester_id_next;
reg [7:0] tag_reg = 7'd0, tag_next;
reg [2:0] tc_reg = 3'd0, tc_next;
reg [2:0] attr_reg = 3'd0, attr_next;
reg [3:0] first_be_reg = 4'd0, first_be_next;
reg [3:0] last_be_reg = 4'd0, last_be_next;
reg cpl_data_reg = 1'b0, cpl_data_next;
reg s_axis_cq_tready_reg = 1'b0, s_axis_cq_tready_next;
reg [AXI_ADDR_WIDTH-1:0] m_axil_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axil_addr_next;
reg m_axil_awvalid_reg = 1'b0, m_axil_awvalid_next;
reg [AXI_DATA_WIDTH-1:0] m_axil_wdata_reg = {AXI_DATA_WIDTH{1'b0}}, m_axil_wdata_next;
reg [AXI_STRB_WIDTH-1:0] m_axil_wstrb_reg = {AXI_STRB_WIDTH{1'b0}}, m_axil_wstrb_next;
reg m_axil_wvalid_reg = 1'b0, m_axil_wvalid_next;
reg m_axil_bready_reg = 1'b0, m_axil_bready_next;
reg m_axil_arvalid_reg = 1'b0, m_axil_arvalid_next;
reg m_axil_rready_reg = 1'b0, m_axil_rready_next;
reg status_error_cor_reg = 1'b0, status_error_cor_next;
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
// internal datapath
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cc_tdata_int;
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cc_tkeep_int;
reg m_axis_cc_tvalid_int;
reg m_axis_cc_tready_int_reg = 1'b0;
reg m_axis_cc_tlast_int;
reg [AXIS_PCIE_CC_USER_WIDTH-1:0] m_axis_cc_tuser_int;
wire m_axis_cc_tready_int_early;
assign s_axis_cq_tready = s_axis_cq_tready_reg;
assign m_axil_awaddr = m_axil_addr_reg;
assign m_axil_awprot = 3'b010;
assign m_axil_awvalid = m_axil_awvalid_reg;
assign m_axil_wdata = m_axil_wdata_reg;
assign m_axil_wstrb = m_axil_wstrb_reg;
assign m_axil_wvalid = m_axil_wvalid_reg;
assign m_axil_bready = m_axil_bready_reg;
assign m_axil_araddr = m_axil_addr_reg;
assign m_axil_arprot = 3'b010;
assign m_axil_arvalid = m_axil_arvalid_reg;
assign m_axil_rready = m_axil_rready_reg;
assign status_error_cor = status_error_cor_reg;
assign status_error_uncor = status_error_uncor_reg;
always @* begin
state_next = STATE_IDLE;
s_axis_cq_tready_next = 1'b0;
dword_count_next = dword_count_reg;
type_next = type_reg;
status_next = status_reg;
requester_id_next = requester_id_reg;
tag_next = tag_reg;
tc_next = tc_reg;
attr_next = attr_reg;
first_be_next = first_be_reg;
last_be_next = last_be_reg;
cpl_data_next = cpl_data_reg;
m_axis_cc_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}};
m_axis_cc_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
m_axis_cc_tvalid_int = 1'b0;
m_axis_cc_tlast_int = 1'b0;
m_axis_cc_tuser_int = {AXIS_PCIE_CC_USER_WIDTH{1'b0}};
casez (first_be_reg)
4'b0000: m_axis_cc_tdata_int[6:0] = {m_axil_addr_reg[6:2], 2'b00}; // lower address
4'bzzz1: m_axis_cc_tdata_int[6:0] = {m_axil_addr_reg[6:2], 2'b00}; // lower address
4'bzz10: m_axis_cc_tdata_int[6:0] = {m_axil_addr_reg[6:2], 2'b01}; // lower address
4'bz100: m_axis_cc_tdata_int[6:0] = {m_axil_addr_reg[6:2], 2'b10}; // lower address
4'b1000: m_axis_cc_tdata_int[6:0] = {m_axil_addr_reg[6:2], 2'b11}; // lower address
endcase
m_axis_cc_tdata_int[9:8] = 2'b00; // AT
casez (first_be_reg)
4'b0000: m_axis_cc_tdata_int[28:16] = 13'd1; // Byte count
4'b0001: m_axis_cc_tdata_int[28:16] = 13'd1; // Byte count
4'b0010: m_axis_cc_tdata_int[28:16] = 13'd1; // Byte count
4'b0100: m_axis_cc_tdata_int[28:16] = 13'd1; // Byte count
4'b1000: m_axis_cc_tdata_int[28:16] = 13'd1; // Byte count
4'b0011: m_axis_cc_tdata_int[28:16] = 13'd2; // Byte count
4'b0110: m_axis_cc_tdata_int[28:16] = 13'd2; // Byte count
4'b1100: m_axis_cc_tdata_int[28:16] = 13'd2; // Byte count
4'b01z1: m_axis_cc_tdata_int[28:16] = 13'd3; // Byte count
4'b1z10: m_axis_cc_tdata_int[28:16] = 13'd3; // Byte count
4'b1zz1: m_axis_cc_tdata_int[28:16] = 13'd4; // Byte count
endcase
m_axis_cc_tdata_int[42:32] = 11'd1; // DWORD count
m_axis_cc_tdata_int[45:43] = status_reg;
m_axis_cc_tdata_int[63:48] = requester_id_reg;
if (AXIS_PCIE_DATA_WIDTH > 64) begin
m_axis_cc_tdata_int[71:64] = tag_reg;
m_axis_cc_tdata_int[87:72] = completer_id;
m_axis_cc_tdata_int[88] = completer_id_enable;
m_axis_cc_tdata_int[91:89] = tc_reg;
m_axis_cc_tdata_int[94:92] = attr_reg;
m_axis_cc_tdata_int[95] = 1'b0; // force ECRC
m_axis_cc_tdata_int[127:96] = m_axil_rdata;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tuser_int[1:0] = 2'b01; // is_sop
m_axis_cc_tuser_int[3:2] = 2'd0; // is_sop0_ptr
m_axis_cc_tuser_int[5:4] = 2'd0; // is_sop1_ptr
m_axis_cc_tuser_int[7:6] = 2'b01; // is_eop
m_axis_cc_tuser_int[11:8] = 4'd3; // is_eop0_ptr
m_axis_cc_tuser_int[15:12] = 4'd0; // is_eop1_ptr
m_axis_cc_tuser_int[16] = 1'b0; // discontinue
m_axis_cc_tuser_int[80:17] = 64'd0; // parity
end else begin
m_axis_cc_tuser_int[0] = 1'b0; // discontinue
m_axis_cc_tuser_int[32:1] = 32'd0; // parity
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tkeep_int = 16'b0000000000001111;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tkeep_int = 8'b00001111;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_cc_tkeep_int = 4'b1111;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cc_tkeep_int = 2'b11;
end
m_axil_addr_next = m_axil_addr_reg;
m_axil_awvalid_next = m_axil_awvalid_reg && !m_axil_awready;
m_axil_wdata_next = m_axil_wdata_reg;
m_axil_wstrb_next = m_axil_wstrb_reg;
m_axil_wvalid_next = m_axil_wvalid_reg && !m_axil_wready;
m_axil_bready_next = 1'b0;
m_axil_arvalid_next = m_axil_arvalid_reg && !m_axil_arready;
m_axil_rready_next = 1'b0;
status_error_cor_next = 1'b0;
status_error_uncor_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state, wait for completion request
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
if (s_axis_cq_tready && s_axis_cq_tvalid) begin
// header fields
m_axil_addr_next = {s_axis_cq_tdata[63:2], 2'b00};
if (AXIS_PCIE_DATA_WIDTH > 64) begin
dword_count_next = s_axis_cq_tdata[74:64];
type_next = s_axis_cq_tdata[78:75];
requester_id_next = s_axis_cq_tdata[95:80];
tag_next = s_axis_cq_tdata[103:96];
tc_next = s_axis_cq_tdata[123:121];
attr_next = s_axis_cq_tdata[126:124];
// data
if (AXIS_PCIE_DATA_WIDTH >= 256) begin
m_axil_wdata_next = s_axis_cq_tdata[159:128];
end
end
// tuser fields
if (AXIS_PCIE_DATA_WIDTH == 512) begin
first_be_next = s_axis_cq_tuser[3:0];
last_be_next = s_axis_cq_tuser[11:8];
end else begin
first_be_next = s_axis_cq_tuser[3:0];
last_be_next = s_axis_cq_tuser[7:4];
end
m_axil_wstrb_next = first_be_next;
status_next = CPL_STATUS_SC; // successful completion
if (AXIS_PCIE_DATA_WIDTH == 64) begin
if (s_axis_cq_tlast) begin
// truncated packet
// report uncorrectable error
status_error_uncor_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_HEADER;
end
end else begin
if (type_next == REQ_MEM_READ || type_next == REQ_IO_READ) begin
// read request
if (s_axis_cq_tlast && dword_count_next == 11'd1) begin
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = m_axis_cc_tready_int_early;
s_axis_cq_tready_next = 1'b0;
state_next = STATE_READ;
end else begin
// bad length
status_next = CPL_STATUS_CA; // completer abort
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = 1'b0;
state_next = STATE_CPL_1;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
end else if (type_next == REQ_MEM_WRITE || type_next == REQ_IO_WRITE) begin
// write request
if (AXIS_PCIE_DATA_WIDTH >= 256 && s_axis_cq_tlast && dword_count_next == 11'd1) begin
m_axil_awvalid_next = 1'b1;
m_axil_wvalid_next = 1'b1;
m_axil_bready_next = 1'b1;
s_axis_cq_tready_next = 1'b0;
state_next = STATE_WRITE_2;
end else if (AXIS_PCIE_DATA_WIDTH < 256 && dword_count_next == 11'd1) begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WRITE_1;
end else begin
// bad length
status_next = CPL_STATUS_CA; // completer abort
if (type_next == REQ_MEM_WRITE) begin
// memory write - posted, no completion
// report uncorrectable error
status_error_uncor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end else begin
// IO write - non-posted, send completion
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = 1'b0;
state_next = STATE_CPL_1;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
end
end else begin
// other request
status_next = CPL_STATUS_UR; // unsupported request
if (type_next == REQ_MEM_WRITE || (type_next & 4'b1100) == 4'b1100) begin
// memory write or message - posted, no completion
// report uncorrectable error
status_error_uncor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end else begin
// other non-posted request, send UR completion
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = 1'b0;
state_next = STATE_CPL_1;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
end
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_HEADER: begin
// header state, handle header (64 bit interface only)
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
// header fields
dword_count_next = s_axis_cq_tdata[10:0];
type_next = s_axis_cq_tdata[14:11];
requester_id_next = s_axis_cq_tdata[31:16];
tag_next = s_axis_cq_tdata[39:32];
tc_next = s_axis_cq_tdata[59:57];
attr_next = s_axis_cq_tdata[62:60];
// data
m_axil_wstrb_next = first_be_reg;
if (s_axis_cq_tready && s_axis_cq_tvalid) begin
if (type_next == REQ_MEM_READ || type_next == REQ_IO_READ) begin
// read request
if (s_axis_cq_tlast && dword_count_next == 11'd1) begin
m_axil_arvalid_next = 1'b1;
m_axil_rready_next = m_axis_cc_tready_int_early;
s_axis_cq_tready_next = 1'b0;
state_next = STATE_READ;
end else begin
// bad length
status_next = CPL_STATUS_CA; // completer abort
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = 1'b0;
state_next = STATE_CPL_1;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
end else if (type_next == REQ_MEM_WRITE || type_next == REQ_IO_WRITE) begin
// write request
if (dword_count_next == 11'd1) begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WRITE_1;
end else begin
// bad length
status_next = CPL_STATUS_CA; // completer abort
if (type_next == REQ_MEM_WRITE) begin
// memory write - posted, no completion
// report uncorrectable error
status_error_uncor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end else begin
// other non-posted request, send UR completion
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = 1'b0;
state_next = STATE_CPL_1;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
end
end else begin
// other request
status_next = CPL_STATUS_UR; // unsupported request
if (type_next == REQ_MEM_WRITE || (type_next & 4'b1100) == 4'b1100) begin
// memory write or message - posted, no completion
// report uncorrectable error
status_error_uncor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end else begin
// other non-posted request, send UR completion
// report correctable error
status_error_cor_next = 1'b1;
if (s_axis_cq_tlast) begin
s_axis_cq_tready_next = 1'b0;
state_next = STATE_CPL_1;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end
end
end else begin
state_next = STATE_HEADER;
end
end
STATE_READ: begin
// read state, wait for read response
m_axil_rready_next = m_axis_cc_tready_int_early;
m_axis_cc_tdata_int[42:32] = 11'd1; // DWORD count
m_axis_cc_tdata_int[45:43] = CPL_STATUS_SC; // status: successful completion
m_axis_cc_tdata_int[127:96] = m_axil_rdata;
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tuser_int[7:6] = 2'b01; // is_eop
m_axis_cc_tuser_int[11:8] = 4'd3; // is_eop0_ptr
m_axis_cc_tuser_int[15:12] = 4'd0; // is_eop1_ptr
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tkeep_int = 16'b0000000000001111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tkeep_int = 8'b00001111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_cc_tkeep_int = 4'b1111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cc_tkeep_int = 2'b11;
m_axis_cc_tlast_int = 1'b0;
end
if (m_axil_rready && m_axil_rvalid) begin
// send completion
m_axis_cc_tvalid_int = 1'b1;
m_axil_rready_next = 1'b0;
if (AXIS_PCIE_DATA_WIDTH == 64) begin
cpl_data_next = 1'b1;
state_next = STATE_CPL_2;
end else begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_READ;
end
end
STATE_WRITE_1: begin
// write 1 state, store write data and initiate write
s_axis_cq_tready_next = 1'b1;
// data
m_axil_wdata_next = s_axis_cq_tdata[31:0];
if (s_axis_cq_tready && s_axis_cq_tvalid) begin
if (s_axis_cq_tlast) begin
m_axil_awvalid_next = 1'b1;
m_axil_wvalid_next = 1'b1;
m_axil_bready_next = m_axis_cc_tready_int_early;
s_axis_cq_tready_next = 1'b0;
state_next = STATE_WRITE_2;
end else begin
s_axis_cq_tready_next = 1'b1;
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WRITE_1;
end
end
STATE_WRITE_2: begin
// write 2 state, handle write response
m_axil_bready_next = m_axis_cc_tready_int_early;
if (m_axil_bready && m_axil_bvalid) begin
m_axil_bready_next = 1'b0;
if (type_reg == REQ_MEM_WRITE) begin
// memory write - posted, no completion
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end else begin
// IO write - non-posted, send completion
m_axis_cc_tvalid_int = 1'b1;
m_axis_cc_tdata_int[42:32] = 11'd0; // DWORD count
m_axis_cc_tdata_int[45:43] = CPL_STATUS_SC; // status: successful completion
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tuser_int[7:6] = 2'b01; // is_eop
m_axis_cc_tuser_int[11:8] = 4'd2; // is_eop0_ptr
m_axis_cc_tuser_int[15:12] = 4'd0; // is_eop1_ptr
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tkeep_int = 16'b0000000000000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tkeep_int = 8'b00000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_cc_tkeep_int = 4'b0111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cc_tkeep_int = 2'b11;
m_axis_cc_tlast_int = 1'b0;
end
if (AXIS_PCIE_DATA_WIDTH == 64) begin
cpl_data_next = 1'b0;
state_next = STATE_CPL_2;
end else begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end
end
end else begin
state_next = STATE_WRITE_2;
end
end
STATE_WAIT_END: begin
// wait end state, wait for end of completion request
s_axis_cq_tready_next = 1'b1;
if (s_axis_cq_tready && s_axis_cq_tvalid) begin
if (s_axis_cq_tlast) begin
// completion
if (type_reg == REQ_MEM_WRITE || (type_reg & 4'b1100) == 4'b1100) begin
// memory write or message - posted, no completion
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end else begin
// IO write - non-posted, send completion
m_axis_cc_tvalid_int = 1'b1;
m_axis_cc_tdata_int[42:32] = 11'd0; // DWORD count
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tuser_int[7:6] = 2'b01; // is_eop
m_axis_cc_tuser_int[11:8] = 4'd2; // is_eop0_ptr
m_axis_cc_tuser_int[15:12] = 4'd0; // is_eop1_ptr
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tkeep_int = 16'b0000000000000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tkeep_int = 8'b00000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_cc_tkeep_int = 4'b0111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cc_tkeep_int = 2'b11;
m_axis_cc_tlast_int = 1'b0;
end
if (m_axis_cc_tready_int_reg) begin
if (AXIS_PCIE_DATA_WIDTH == 64) begin
cpl_data_next = 1'b0;
state_next = STATE_CPL_2;
end else begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_CPL_1;
end
end
end else begin
state_next = STATE_WAIT_END;
end
end else begin
state_next = STATE_WAIT_END;
end
end
STATE_CPL_1: begin
// send completion
m_axis_cc_tvalid_int = 1'b1;
m_axis_cc_tdata_int[28:16] = 13'd0; // byte count
m_axis_cc_tdata_int[42:32] = 11'd0; // DWORD count
m_axis_cc_tdata_int[45:43] = status_reg;
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tuser_int[7:6] = 2'b01; // is_eop
m_axis_cc_tuser_int[11:8] = 4'd2; // is_eop0_ptr
m_axis_cc_tuser_int[15:12] = 4'd0; // is_eop1_ptr
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_cc_tkeep_int = 16'b0000000000000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_cc_tkeep_int = 8'b00000111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_cc_tkeep_int = 4'b0111;
m_axis_cc_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_cc_tkeep_int = 2'b11;
m_axis_cc_tlast_int = 1'b0;
end
if (m_axis_cc_tready_int_reg) begin
if (AXIS_PCIE_DATA_WIDTH == 64) begin
cpl_data_next = 1'b0;
state_next = STATE_CPL_2;
end else begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_CPL_1;
end
end
STATE_CPL_2: begin
// send rest of completion
m_axis_cc_tvalid_int = 1'b1;
m_axis_cc_tdata_int[7:0] = tag_reg;
m_axis_cc_tdata_int[23:8] = completer_id;
m_axis_cc_tdata_int[24] = completer_id_enable;
m_axis_cc_tdata_int[27:25] = tc_reg;
m_axis_cc_tdata_int[30:28] = attr_reg;
m_axis_cc_tdata_int[31] = 1'b0; // force ECRC
m_axis_cc_tdata_int[63:32] = m_axil_rdata;
m_axis_cc_tkeep_int = {cpl_data_reg, 1'b1};
m_axis_cc_tlast_int = 1'b1;
if (m_axis_cc_tready_int_reg) begin
s_axis_cq_tready_next = m_axis_cc_tready_int_early;
state_next = STATE_IDLE;
end else begin
state_next = STATE_CPL_2;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axis_cq_tready_reg <= 1'b0;
m_axil_awvalid_reg <= 1'b0;
m_axil_wvalid_reg <= 1'b0;
m_axil_bready_reg <= 1'b0;
m_axil_arvalid_reg <= 1'b0;
m_axil_rready_reg <= 1'b0;
status_error_cor_reg <= 1'b0;
status_error_uncor_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axis_cq_tready_reg <= s_axis_cq_tready_next;
m_axil_awvalid_reg <= m_axil_awvalid_next;
m_axil_wvalid_reg <= m_axil_wvalid_next;
m_axil_bready_reg <= m_axil_bready_next;
m_axil_arvalid_reg <= m_axil_arvalid_next;
m_axil_rready_reg <= m_axil_rready_next;
status_error_cor_reg <= status_error_cor_next;
status_error_uncor_reg <= status_error_uncor_next;
end
dword_count_reg <= dword_count_next;
type_reg <= type_next;
tag_reg <= tag_next;
status_reg <= status_next;
requester_id_reg <= requester_id_next;
tc_reg <= tc_next;
attr_reg <= attr_next;
first_be_reg <= first_be_next;
last_be_reg <= last_be_next;
cpl_data_reg <= cpl_data_next;
m_axil_addr_reg <= m_axil_addr_next;
m_axil_wdata_reg <= m_axil_wdata_next;
m_axil_wstrb_reg <= m_axil_wstrb_next;
end
// output datapath logic
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_cc_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_cc_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg m_axis_cc_tvalid_reg = 1'b0, m_axis_cc_tvalid_next;
reg m_axis_cc_tlast_reg = 1'b0;
reg [AXIS_PCIE_CC_USER_WIDTH-1:0] m_axis_cc_tuser_reg = {AXIS_PCIE_CC_USER_WIDTH{1'b0}};
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_cc_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_cc_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg temp_m_axis_cc_tvalid_reg = 1'b0, temp_m_axis_cc_tvalid_next;
reg temp_m_axis_cc_tlast_reg = 1'b0;
reg [AXIS_PCIE_CC_USER_WIDTH-1:0] temp_m_axis_cc_tuser_reg = {AXIS_PCIE_CC_USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_cc_tdata = m_axis_cc_tdata_reg;
assign m_axis_cc_tkeep = m_axis_cc_tkeep_reg;
assign m_axis_cc_tvalid = m_axis_cc_tvalid_reg;
assign m_axis_cc_tlast = m_axis_cc_tlast_reg;
assign m_axis_cc_tuser = m_axis_cc_tuser_reg;
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_cc_tready_int_early = m_axis_cc_tready || (!temp_m_axis_cc_tvalid_reg && !m_axis_cc_tvalid_reg);
always @* begin
// transfer sink ready state to source
m_axis_cc_tvalid_next = m_axis_cc_tvalid_reg;
temp_m_axis_cc_tvalid_next = temp_m_axis_cc_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_cc_tready_int_reg) begin
// input is ready
if (m_axis_cc_tready || !m_axis_cc_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_cc_tvalid_next = m_axis_cc_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_cc_tvalid_next = m_axis_cc_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_cc_tready) begin
// input is not ready, but output is ready
m_axis_cc_tvalid_next = temp_m_axis_cc_tvalid_reg;
temp_m_axis_cc_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_cc_tvalid_reg <= m_axis_cc_tvalid_next;
m_axis_cc_tready_int_reg <= m_axis_cc_tready_int_early;
temp_m_axis_cc_tvalid_reg <= temp_m_axis_cc_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_cc_tdata_reg <= m_axis_cc_tdata_int;
m_axis_cc_tkeep_reg <= m_axis_cc_tkeep_int;
m_axis_cc_tlast_reg <= m_axis_cc_tlast_int;
m_axis_cc_tuser_reg <= m_axis_cc_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_cc_tdata_reg <= temp_m_axis_cc_tdata_reg;
m_axis_cc_tkeep_reg <= temp_m_axis_cc_tkeep_reg;
m_axis_cc_tlast_reg <= temp_m_axis_cc_tlast_reg;
m_axis_cc_tuser_reg <= temp_m_axis_cc_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_cc_tdata_reg <= m_axis_cc_tdata_int;
temp_m_axis_cc_tkeep_reg <= m_axis_cc_tkeep_int;
temp_m_axis_cc_tlast_reg <= m_axis_cc_tlast_int;
temp_m_axis_cc_tuser_reg <= m_axis_cc_tuser_int;
end
if (rst) begin
m_axis_cc_tvalid_reg <= 1'b0;
m_axis_cc_tready_int_reg <= 1'b0;
temp_m_axis_cc_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall