1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/dma_ram_demux_wr.v
2022-02-15 00:39:46 -08:00

327 lines
13 KiB
Verilog

/*
Copyright (c) 2019-2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* DMA RAM demux (write)
*/
module dma_ram_demux_wr #
(
// Number of ports
parameter PORTS = 2,
// RAM segment count
parameter SEG_COUNT = 2,
// RAM segment data width
parameter SEG_DATA_WIDTH = 64,
// RAM segment byte enable width
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
// RAM segment address width
parameter SEG_ADDR_WIDTH = 8,
// Input RAM segment select width
parameter S_RAM_SEL_WIDTH = 2,
// Output RAM segment select width
// Additional bits required for response routing
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+$clog2(PORTS)
)
(
input wire clk,
input wire rst,
/*
* RAM interface (from DMA interface)
*/
input wire [SEG_COUNT*M_RAM_SEL_WIDTH-1:0] ctrl_wr_cmd_sel,
input wire [SEG_COUNT*SEG_BE_WIDTH-1:0] ctrl_wr_cmd_be,
input wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ctrl_wr_cmd_addr,
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ctrl_wr_cmd_data,
input wire [SEG_COUNT-1:0] ctrl_wr_cmd_valid,
output wire [SEG_COUNT-1:0] ctrl_wr_cmd_ready,
output wire [SEG_COUNT-1:0] ctrl_wr_done,
/*
* RAM interface (towards RAM)
*/
output wire [PORTS*SEG_COUNT*S_RAM_SEL_WIDTH-1:0] ram_wr_cmd_sel,
output wire [PORTS*SEG_COUNT*SEG_BE_WIDTH-1:0] ram_wr_cmd_be,
output wire [PORTS*SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_wr_cmd_addr,
output wire [PORTS*SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_wr_cmd_data,
output wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_valid,
input wire [PORTS*SEG_COUNT-1:0] ram_wr_cmd_ready,
input wire [PORTS*SEG_COUNT-1:0] ram_wr_done
);
parameter CL_PORTS = $clog2(PORTS);
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
parameter FIFO_ADDR_WIDTH = 5;
// check configuration
initial begin
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
$finish;
end
end
generate
genvar n, p;
for (n = 0; n < SEG_COUNT; n = n + 1) begin
// FIFO to maintain response ordering
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_wr_ptr_reg = 0;
reg [FIFO_ADDR_WIDTH+1-1:0] fifo_rd_ptr_reg = 0;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [CL_PORTS-1:0] fifo_sel[(2**FIFO_ADDR_WIDTH)-1:0];
wire fifo_empty = fifo_wr_ptr_reg == fifo_rd_ptr_reg;
wire fifo_full = fifo_wr_ptr_reg == (fifo_rd_ptr_reg ^ (1 << FIFO_ADDR_WIDTH));
integer i;
initial begin
for (i = 0; i < 2**FIFO_ADDR_WIDTH; i = i + 1) begin
fifo_sel[i] = 0;
end
end
// RAM write command demux
wire [M_RAM_SEL_WIDTH-1:0] seg_ctrl_wr_cmd_sel = ctrl_wr_cmd_sel[M_RAM_SEL_WIDTH*n +: M_RAM_SEL_WIDTH];
wire [SEG_BE_WIDTH-1:0] seg_ctrl_wr_cmd_be = ctrl_wr_cmd_be[SEG_BE_WIDTH*n +: SEG_BE_WIDTH];
wire [SEG_ADDR_WIDTH-1:0] seg_ctrl_wr_cmd_addr = ctrl_wr_cmd_addr[SEG_ADDR_WIDTH*n +: SEG_ADDR_WIDTH];
wire [SEG_DATA_WIDTH-1:0] seg_ctrl_wr_cmd_data = ctrl_wr_cmd_data[SEG_DATA_WIDTH*n +: SEG_DATA_WIDTH];
wire seg_ctrl_wr_cmd_valid = ctrl_wr_cmd_valid[n];
wire seg_ctrl_wr_cmd_ready;
assign ctrl_wr_cmd_ready[n] = seg_ctrl_wr_cmd_ready;
wire [PORTS*S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel;
wire [PORTS*SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be;
wire [PORTS*SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr;
wire [PORTS*SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data;
wire [PORTS-1:0] seg_ram_wr_cmd_valid;
wire [PORTS-1:0] seg_ram_wr_cmd_ready;
for (p = 0; p < PORTS; p = p + 1) begin
if (S_RAM_SEL_WIDTH > 0) begin
assign ram_wr_cmd_sel[(p*SEG_COUNT+n)*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT] = seg_ram_wr_cmd_sel[p*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
end
assign ram_wr_cmd_be[(p*SEG_COUNT+n)*SEG_BE_WIDTH +: SEG_BE_WIDTH] = seg_ram_wr_cmd_be[p*SEG_BE_WIDTH +: SEG_BE_WIDTH];
assign ram_wr_cmd_addr[(p*SEG_COUNT+n)*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = seg_ram_wr_cmd_addr[p*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH];
assign ram_wr_cmd_data[(p*SEG_COUNT+n)*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] = seg_ram_wr_cmd_data[p*SEG_DATA_WIDTH +: SEG_DATA_WIDTH];
assign ram_wr_cmd_valid[p*SEG_COUNT+n] = seg_ram_wr_cmd_valid[p];
assign seg_ram_wr_cmd_ready[p] = ram_wr_cmd_ready[p*SEG_COUNT+n];
end
if (S_RAM_SEL_WIDTH == 0) begin
assign ram_wr_cmd_sel = 0;
end
// internal datapath
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_int;
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_int;
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_int;
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_int;
reg [PORTS-1:0] seg_ram_wr_cmd_valid_int;
reg seg_ram_wr_cmd_ready_int_reg = 1'b0;
wire seg_ram_wr_cmd_ready_int_early;
assign seg_ctrl_wr_cmd_ready = seg_ram_wr_cmd_ready_int_reg && !fifo_full;
wire [CL_PORTS-1:0] select_cmd = PORTS > 1 ? (seg_ctrl_wr_cmd_sel >> (M_RAM_SEL_WIDTH - CL_PORTS)) : 0;
always @* begin
seg_ram_wr_cmd_sel_int = seg_ctrl_wr_cmd_sel;
seg_ram_wr_cmd_be_int = seg_ctrl_wr_cmd_be;
seg_ram_wr_cmd_addr_int = seg_ctrl_wr_cmd_addr;
seg_ram_wr_cmd_data_int = seg_ctrl_wr_cmd_data;
seg_ram_wr_cmd_valid_int = (seg_ctrl_wr_cmd_valid && seg_ctrl_wr_cmd_ready) << select_cmd;
end
always @(posedge clk) begin
if (seg_ctrl_wr_cmd_valid && seg_ctrl_wr_cmd_ready) begin
fifo_sel[fifo_wr_ptr_reg[FIFO_ADDR_WIDTH-1:0]] <= select_cmd;
fifo_wr_ptr_reg <= fifo_wr_ptr_reg + 1;
end
if (rst) begin
fifo_wr_ptr_reg <= 0;
end
end
// output datapath logic
reg [S_RAM_SEL_WIDTH-1:0] seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
reg [SEG_BE_WIDTH-1:0] seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [SEG_DATA_WIDTH-1:0] seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg [PORTS-1:0] seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, seg_ram_wr_cmd_valid_next;
reg [S_RAM_SEL_WIDTH-1:0] temp_seg_ram_wr_cmd_sel_reg = {S_RAM_SEL_WIDTH_INT{1'b0}};
reg [SEG_BE_WIDTH-1:0] temp_seg_ram_wr_cmd_be_reg = {SEG_BE_WIDTH{1'b0}};
reg [SEG_ADDR_WIDTH-1:0] temp_seg_ram_wr_cmd_addr_reg = {SEG_ADDR_WIDTH{1'b0}};
reg [SEG_DATA_WIDTH-1:0] temp_seg_ram_wr_cmd_data_reg = {SEG_DATA_WIDTH{1'b0}};
reg [PORTS-1:0] temp_seg_ram_wr_cmd_valid_reg = {PORTS{1'b0}}, temp_seg_ram_wr_cmd_valid_next;
// datapath control
reg store_axis_resp_int_to_output;
reg store_axis_resp_int_to_temp;
reg store_axis_resp_temp_to_output;
assign seg_ram_wr_cmd_sel = {PORTS{seg_ram_wr_cmd_sel_reg}};
assign seg_ram_wr_cmd_be = {PORTS{seg_ram_wr_cmd_be_reg}};
assign seg_ram_wr_cmd_addr = {PORTS{seg_ram_wr_cmd_addr_reg}};
assign seg_ram_wr_cmd_data = {PORTS{seg_ram_wr_cmd_data_reg}};
assign seg_ram_wr_cmd_valid = seg_ram_wr_cmd_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign seg_ram_wr_cmd_ready_int_early = (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || (!temp_seg_ram_wr_cmd_valid_reg && (!seg_ram_wr_cmd_valid_reg || !seg_ram_wr_cmd_valid_int));
always @* begin
// transfer sink ready state to source
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_reg;
temp_seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
store_axis_resp_int_to_output = 1'b0;
store_axis_resp_int_to_temp = 1'b0;
store_axis_resp_temp_to_output = 1'b0;
if (seg_ram_wr_cmd_ready_int_reg) begin
// input is ready
if ((seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) || !seg_ram_wr_cmd_valid_reg) begin
// output is ready or currently not valid, transfer data to output
seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
store_axis_resp_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_seg_ram_wr_cmd_valid_next = seg_ram_wr_cmd_valid_int;
store_axis_resp_int_to_temp = 1'b1;
end
end else if (seg_ram_wr_cmd_ready & seg_ram_wr_cmd_valid_reg) begin
// input is not ready, but output is ready
seg_ram_wr_cmd_valid_next = temp_seg_ram_wr_cmd_valid_reg;
temp_seg_ram_wr_cmd_valid_next = {PORTS{1'b0}};
store_axis_resp_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
seg_ram_wr_cmd_ready_int_reg <= 1'b0;
temp_seg_ram_wr_cmd_valid_reg <= {PORTS{1'b0}};
end else begin
seg_ram_wr_cmd_valid_reg <= seg_ram_wr_cmd_valid_next;
seg_ram_wr_cmd_ready_int_reg <= seg_ram_wr_cmd_ready_int_early;
temp_seg_ram_wr_cmd_valid_reg <= temp_seg_ram_wr_cmd_valid_next;
end
// datapath
if (store_axis_resp_int_to_output) begin
seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
end else if (store_axis_resp_temp_to_output) begin
seg_ram_wr_cmd_sel_reg <= temp_seg_ram_wr_cmd_sel_reg;
seg_ram_wr_cmd_be_reg <= temp_seg_ram_wr_cmd_be_reg;
seg_ram_wr_cmd_addr_reg <= temp_seg_ram_wr_cmd_addr_reg;
seg_ram_wr_cmd_data_reg <= temp_seg_ram_wr_cmd_data_reg;
end
if (store_axis_resp_int_to_temp) begin
temp_seg_ram_wr_cmd_sel_reg <= seg_ram_wr_cmd_sel_int;
temp_seg_ram_wr_cmd_be_reg <= seg_ram_wr_cmd_be_int;
temp_seg_ram_wr_cmd_addr_reg <= seg_ram_wr_cmd_addr_int;
temp_seg_ram_wr_cmd_data_reg <= seg_ram_wr_cmd_data_int;
end
end
// RAM write done mux
wire [PORTS-1:0] seg_ram_wr_done;
wire [PORTS-1:0] seg_ram_wr_done_sel;
wire seg_ctrl_wr_done;
for (p = 0; p < PORTS; p = p + 1) begin
assign seg_ram_wr_done[p] = ram_wr_done[p*SEG_COUNT+n];
end
assign ctrl_wr_done[n] = seg_ctrl_wr_done;
wire [CL_PORTS-1:0] select_resp = fifo_sel[fifo_rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]];
for (p = 0; p < PORTS; p = p + 1) begin
reg [FIFO_ADDR_WIDTH+1-1:0] done_count_reg = 0;
reg done_reg = 1'b0;
assign seg_ram_wr_done_sel[p] = done_reg;
always @(posedge clk) begin
if (select_resp == p && (done_count_reg != 0 || seg_ram_wr_done[p])) begin
done_reg <= 1'b1;
if (!seg_ram_wr_done[p]) begin
done_count_reg <= done_count_reg - 1;
end
end else begin
done_reg <= 1'b0;
if (seg_ram_wr_done[p]) begin
done_count_reg <= done_count_reg + 1;
end
end
if (rst) begin
done_count_reg <= 0;
done_reg <= 1'b0;
end
end
end
assign seg_ctrl_wr_done = seg_ram_wr_done_sel != 0;
always @(posedge clk) begin
if (seg_ctrl_wr_done && !fifo_empty) begin
fifo_rd_ptr_reg <= fifo_rd_ptr_reg + 1;
end
if (rst) begin
fifo_rd_ptr_reg <= 0;
end
end
end
endgenerate
endmodule
`resetall