mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
1286 lines
55 KiB
Verilog
1286 lines
55 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2018 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* Ultrascale PCIe AXI DMA Read
|
|
*/
|
|
module pcie_us_axi_dma_rd #
|
|
(
|
|
parameter AXIS_PCIE_DATA_WIDTH = 256,
|
|
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
|
|
parameter AXI_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH,
|
|
parameter AXI_ADDR_WIDTH = 64,
|
|
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
|
|
parameter AXI_ID_WIDTH = 8,
|
|
parameter AXI_MAX_BURST_LEN = 256,
|
|
parameter PCIE_ADDR_WIDTH = 64,
|
|
parameter PCIE_CLIENT_TAG = 1,
|
|
parameter PCIE_TAG_COUNT = 32,
|
|
parameter PCIE_TAG_WIDTH = $clog2(PCIE_TAG_COUNT),
|
|
parameter PCIE_EXT_TAG_ENABLE = 0,
|
|
parameter LEN_WIDTH = 20,
|
|
parameter TAG_WIDTH = 8
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* AXI input (RC)
|
|
*/
|
|
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rc_tdata,
|
|
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rc_tkeep,
|
|
input wire s_axis_rc_tvalid,
|
|
output wire s_axis_rc_tready,
|
|
input wire s_axis_rc_tlast,
|
|
input wire [74:0] s_axis_rc_tuser,
|
|
|
|
/*
|
|
* AXI output (RQ)
|
|
*/
|
|
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata,
|
|
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep,
|
|
output wire m_axis_rq_tvalid,
|
|
input wire m_axis_rq_tready,
|
|
output wire m_axis_rq_tlast,
|
|
output wire [59:0] m_axis_rq_tuser,
|
|
|
|
/*
|
|
* Tag input
|
|
*/
|
|
input wire [PCIE_TAG_WIDTH-1:0] s_axis_pcie_rq_tag,
|
|
input wire s_axis_pcie_rq_tag_valid,
|
|
|
|
/*
|
|
* AXI read descriptor input
|
|
*/
|
|
input wire [PCIE_ADDR_WIDTH-1:0] s_axis_read_desc_pcie_addr,
|
|
input wire [AXI_ADDR_WIDTH-1:0] s_axis_read_desc_axi_addr,
|
|
input wire [LEN_WIDTH-1:0] s_axis_read_desc_len,
|
|
input wire [TAG_WIDTH-1:0] s_axis_read_desc_tag,
|
|
input wire s_axis_read_desc_valid,
|
|
output wire s_axis_read_desc_ready,
|
|
|
|
/*
|
|
* AXI read descriptor status output
|
|
*/
|
|
output wire [TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
|
|
output wire m_axis_read_desc_status_valid,
|
|
|
|
/*
|
|
* AXI master interface
|
|
*/
|
|
output wire [AXI_ID_WIDTH-1:0] m_axi_awid,
|
|
output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
|
|
output wire [7:0] m_axi_awlen,
|
|
output wire [2:0] m_axi_awsize,
|
|
output wire [1:0] m_axi_awburst,
|
|
output wire m_axi_awlock,
|
|
output wire [3:0] m_axi_awcache,
|
|
output wire [2:0] m_axi_awprot,
|
|
output wire m_axi_awvalid,
|
|
input wire m_axi_awready,
|
|
output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata,
|
|
output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb,
|
|
output wire m_axi_wlast,
|
|
output wire m_axi_wvalid,
|
|
input wire m_axi_wready,
|
|
input wire [AXI_ID_WIDTH-1:0] m_axi_bid,
|
|
input wire [1:0] m_axi_bresp,
|
|
input wire m_axi_bvalid,
|
|
output wire m_axi_bready,
|
|
|
|
/*
|
|
* Configuration
|
|
*/
|
|
input wire enable,
|
|
input wire ext_tag_enable,
|
|
input wire [15:0] requester_id,
|
|
input wire requester_id_enable,
|
|
input wire [2:0] max_read_request_size,
|
|
|
|
/*
|
|
* Status
|
|
*/
|
|
output wire status_error_cor,
|
|
output wire status_error_uncor
|
|
);
|
|
|
|
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
|
|
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
|
|
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
|
|
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
|
|
|
|
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
|
|
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
|
|
|
|
parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8);
|
|
|
|
parameter STATUS_FIFO_ADDR_WIDTH = 5;
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256) begin
|
|
$error("Error: PCIe interface width must be 64, 128, or 256");
|
|
$finish;
|
|
end
|
|
|
|
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
|
|
$error("Error: PCIe interface requires dword (32-bit) granularity");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin
|
|
$error("Error: AXI interface width must match PCIe interface width");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
|
|
$error("Error: AXI interface requires byte (8-bit) granularity");
|
|
$finish;
|
|
end
|
|
|
|
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
|
|
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
localparam [3:0]
|
|
REQ_MEM_READ = 4'b0000,
|
|
REQ_MEM_WRITE = 4'b0001,
|
|
REQ_IO_READ = 4'b0010,
|
|
REQ_IO_WRITE = 4'b0011,
|
|
REQ_MEM_FETCH_ADD = 4'b0100,
|
|
REQ_MEM_SWAP = 4'b0101,
|
|
REQ_MEM_CAS = 4'b0110,
|
|
REQ_MEM_READ_LOCKED = 4'b0111,
|
|
REQ_CFG_READ_0 = 4'b1000,
|
|
REQ_CFG_READ_1 = 4'b1001,
|
|
REQ_CFG_WRITE_0 = 4'b1010,
|
|
REQ_CFG_WRITE_1 = 4'b1011,
|
|
REQ_MSG = 4'b1100,
|
|
REQ_MSG_VENDOR = 4'b1101,
|
|
REQ_MSG_ATS = 4'b1110;
|
|
|
|
localparam [2:0]
|
|
CPL_STATUS_SC = 3'b000, // successful completion
|
|
CPL_STATUS_UR = 3'b001, // unsupported request
|
|
CPL_STATUS_CRS = 3'b010, // configuration request retry status
|
|
CPL_STATUS_CA = 3'b100; // completer abort
|
|
|
|
localparam [4:0]
|
|
RC_ERROR_NORMAL_TERMINATION = 4'b0000,
|
|
RC_ERROR_POISONED = 4'b0001,
|
|
RC_ERROR_BAD_STATUS = 4'b0010,
|
|
RC_ERROR_INVALID_LENGTH = 4'b0011,
|
|
RC_ERROR_MISMATCH = 4'b0100,
|
|
RC_ERROR_INVALID_ADDRESS = 4'b0101,
|
|
RC_ERROR_INVALID_TAG = 4'b0110,
|
|
RC_ERROR_TIMEOUT = 4'b1001,
|
|
RC_ERROR_FLR = 4'b1000;
|
|
|
|
localparam [1:0]
|
|
REQ_STATE_IDLE = 2'd0,
|
|
REQ_STATE_START = 2'd1,
|
|
REQ_STATE_HEADER = 2'd2;
|
|
|
|
reg [1:0] req_state_reg = REQ_STATE_IDLE, req_state_next;
|
|
|
|
localparam [2:0]
|
|
TLP_STATE_IDLE = 3'd0,
|
|
TLP_STATE_HEADER = 3'd1,
|
|
TLP_STATE_START = 3'd2,
|
|
TLP_STATE_TRANSFER = 3'd3,
|
|
TLP_STATE_WAIT_END = 3'd4;
|
|
|
|
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
|
|
|
|
// datapath control signals
|
|
reg transfer_in_save;
|
|
|
|
reg tag_table_we_req;
|
|
reg tag_table_we_tlp;
|
|
|
|
reg status_fifo_we;
|
|
|
|
reg tlp_cmd_ready;
|
|
|
|
reg finish_tag;
|
|
|
|
reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, req_pcie_addr_next;
|
|
reg [AXI_ADDR_WIDTH-1:0] req_axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, req_axi_addr_next;
|
|
reg [LEN_WIDTH-1:0] req_op_count_reg = {LEN_WIDTH{1'b0}}, req_op_count_next;
|
|
reg [LEN_WIDTH-1:0] req_tlp_count_reg = {LEN_WIDTH{1'b0}}, req_tlp_count_next;
|
|
|
|
reg [11:0] lower_addr_reg = 12'd0, lower_addr_next;
|
|
reg [12:0] byte_count_reg = 13'd0, byte_count_next;
|
|
reg [3:0] error_code_reg = 4'd0, error_code_next;
|
|
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
|
|
reg [9:0] op_dword_count_reg = 10'd0, op_dword_count_next;
|
|
reg [12:0] op_count_reg = 13'd0, op_count_next;
|
|
reg [12:0] tr_count_reg = 13'd0, tr_count_next;
|
|
reg [11:0] input_cycle_count_reg = 12'd0, input_cycle_count_next;
|
|
reg [11:0] output_cycle_count_reg = 12'd0, output_cycle_count_next;
|
|
reg input_active_reg = 1'b0, input_active_next;
|
|
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
|
|
reg first_cycle_reg = 1'b0, first_cycle_next;
|
|
reg last_cycle_reg = 1'b0, last_cycle_next;
|
|
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, pcie_tag_next;
|
|
reg [TAG_WIDTH-1:0] tag_reg = {TAG_WIDTH{1'b0}}, tag_next;
|
|
reg final_cpl_reg = 1'b0, final_cpl_next;
|
|
|
|
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
|
|
reg [OFFSET_WIDTH-1:0] first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, first_cycle_offset_next;
|
|
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
|
|
|
|
reg [AXI_ADDR_WIDTH-1:0] tlp_cmd_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, tlp_cmd_addr_next;
|
|
reg [TAG_WIDTH-1:0] tlp_cmd_tag_reg = {TAG_WIDTH{1'b0}}, tlp_cmd_tag_next;
|
|
reg [PCIE_TAG_WIDTH-1:0] tlp_cmd_pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, tlp_cmd_pcie_tag_next;
|
|
reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next;
|
|
reg tlp_cmd_valid_reg = 1'b0, tlp_cmd_valid_next;
|
|
|
|
reg [AXI_ADDR_WIDTH-1:0] tag_table_axi_addr[(2**PCIE_TAG_WIDTH)-1:0];
|
|
reg [TAG_WIDTH-1:0] tag_table_tag[(2**PCIE_TAG_WIDTH)-1:0];
|
|
reg tag_table_last[(2**PCIE_TAG_WIDTH)-1:0];
|
|
|
|
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_wr_ptr_reg = 0, status_fifo_wr_ptr_next;
|
|
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_rd_ptr_reg = 0, status_fifo_rd_ptr_next;
|
|
reg [TAG_WIDTH-1:0] status_fifo_tag[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
|
|
reg status_fifo_last[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
|
|
reg status_fifo_completion[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
|
|
reg [TAG_WIDTH-1:0] status_fifo_wr_tag;
|
|
reg status_fifo_wr_last;
|
|
reg status_fifo_wr_completion;
|
|
|
|
reg [10:0] max_read_request_size_dw_reg = 11'd0;
|
|
|
|
reg s_axis_rc_tready_reg = 1'b0, s_axis_rc_tready_next;
|
|
reg s_axis_read_desc_ready_reg = 1'b0, s_axis_read_desc_ready_next;
|
|
|
|
reg [TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
|
|
reg m_axis_read_desc_status_valid_reg = 1'b0, m_axis_read_desc_status_valid_next;
|
|
|
|
reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
|
|
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
|
|
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
|
|
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
|
|
|
|
reg status_error_cor_reg = 1'b0, status_error_cor_next;
|
|
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
|
|
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] save_axis_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
|
|
wire [AXI_DATA_WIDTH-1:0] shift_axis_tdata = {s_axis_rc_tdata, save_axis_tdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE);
|
|
|
|
// internal datapath
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int;
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int;
|
|
reg m_axis_rq_tvalid_int;
|
|
reg m_axis_rq_tready_int_reg = 1'b0;
|
|
reg m_axis_rq_tlast_int;
|
|
reg [59:0] m_axis_rq_tuser_int;
|
|
wire m_axis_rq_tready_int_early;
|
|
|
|
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int;
|
|
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int;
|
|
reg m_axi_wvalid_int;
|
|
reg m_axi_wready_int_reg = 1'b0;
|
|
reg m_axi_wlast_int;
|
|
wire m_axi_wready_int_early;
|
|
|
|
assign s_axis_rc_tready = s_axis_rc_tready_reg;
|
|
assign s_axis_read_desc_ready = s_axis_read_desc_ready_reg;
|
|
|
|
assign m_axis_read_desc_status_tag = m_axis_read_desc_status_tag_reg;
|
|
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
|
|
|
|
assign m_axi_awid = {AXI_ID_WIDTH{1'b0}};
|
|
assign m_axi_awaddr = m_axi_awaddr_reg;
|
|
assign m_axi_awlen = m_axi_awlen_reg;
|
|
assign m_axi_awsize = $clog2(AXI_STRB_WIDTH);
|
|
assign m_axi_awburst = 2'b01;
|
|
assign m_axi_awlock = 1'b0;
|
|
assign m_axi_awcache = 4'b0011;
|
|
assign m_axi_awprot = 3'b010;
|
|
assign m_axi_awvalid = m_axi_awvalid_reg;
|
|
assign m_axi_bready = m_axi_bready_reg;
|
|
|
|
assign status_error_cor = status_error_cor_reg;
|
|
assign status_error_uncor = status_error_uncor_reg;
|
|
|
|
wire [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_plus_max_read_request = req_pcie_addr_reg + {max_read_request_size_dw_reg, 2'b00};
|
|
wire [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_plus_op_count = req_pcie_addr_reg + req_op_count_reg;
|
|
wire [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_plus_tlp_count = req_pcie_addr_reg + req_tlp_count_reg;
|
|
|
|
wire [AXI_ADDR_WIDTH-1:0] axi_addr_plus_max_burst = axi_addr_reg + AXI_MAX_BURST_SIZE;
|
|
wire [AXI_ADDR_WIDTH-1:0] axi_addr_plus_op_count = axi_addr_reg + op_count_reg;
|
|
|
|
wire [3:0] first_be = 4'b1111 << req_pcie_addr_reg[1:0];
|
|
wire [3:0] last_be = 4'b1111 >> (3 - ((req_pcie_addr_reg[1:0] + req_tlp_count_next[1:0] - 1) & 3));
|
|
wire [10:0] dword_count = (req_tlp_count_next + req_pcie_addr_reg[1:0] + 3) >> 2;
|
|
|
|
wire [PCIE_TAG_WIDTH-1:0] new_tag;
|
|
wire new_tag_valid;
|
|
reg new_tag_ready;
|
|
|
|
wire [PCIE_TAG_COUNT-1:0] active_tags;
|
|
|
|
pcie_tag_manager #(
|
|
.PCIE_TAG_COUNT(PCIE_TAG_COUNT),
|
|
.PCIE_TAG_WIDTH(PCIE_TAG_WIDTH),
|
|
.PCIE_EXT_TAG_ENABLE(PCIE_EXT_TAG_ENABLE)
|
|
)
|
|
pcie_tag_manager_inst (
|
|
.clk(clk),
|
|
.rst(rst),
|
|
|
|
.m_axis_tag(new_tag),
|
|
.m_axis_tag_valid(new_tag_valid),
|
|
.m_axis_tag_ready(new_tag_ready),
|
|
|
|
.s_axis_tag(pcie_tag_reg),
|
|
.s_axis_tag_valid(finish_tag),
|
|
|
|
.ext_tag_enable(ext_tag_enable),
|
|
|
|
.active_tags(active_tags)
|
|
);
|
|
|
|
always @* begin
|
|
req_state_next = REQ_STATE_IDLE;
|
|
|
|
s_axis_read_desc_ready_next = 1'b0;
|
|
|
|
req_pcie_addr_next = req_pcie_addr_reg;
|
|
req_axi_addr_next = req_axi_addr_reg;
|
|
req_op_count_next = req_op_count_reg;
|
|
req_tlp_count_next = req_tlp_count_reg;
|
|
|
|
tlp_cmd_addr_next = tlp_cmd_addr_reg;
|
|
tlp_cmd_tag_next = tlp_cmd_tag_reg;
|
|
tlp_cmd_pcie_tag_next = tlp_cmd_pcie_tag_reg;
|
|
tlp_cmd_last_next = tlp_cmd_last_reg;
|
|
tlp_cmd_valid_next = tlp_cmd_valid_reg && !tlp_cmd_ready;
|
|
|
|
m_axis_rq_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
m_axis_rq_tvalid_int = 1'b0;
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
end else begin
|
|
m_axis_rq_tlast_int = 1'b0;
|
|
end
|
|
m_axis_rq_tuser_int = 60'd0;
|
|
|
|
m_axis_rq_tdata_int[1:0] = 2'b0; // address type
|
|
m_axis_rq_tdata_int[63:2] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
m_axis_rq_tdata_int[74:64] = dword_count; // DWORD count
|
|
m_axis_rq_tdata_int[78:75] = REQ_MEM_READ; // request type - memory read
|
|
m_axis_rq_tdata_int[79] = 1'b0; // poisoned request
|
|
m_axis_rq_tdata_int[95:80] = requester_id;
|
|
m_axis_rq_tdata_int[103:96] = new_tag;
|
|
m_axis_rq_tdata_int[119:104] = 16'd0; // completer ID
|
|
m_axis_rq_tdata_int[120] = requester_id_enable;
|
|
m_axis_rq_tdata_int[123:121] = 3'b000; // traffic class
|
|
m_axis_rq_tdata_int[126:124] = 3'b000; // attr
|
|
m_axis_rq_tdata_int[127] = 1'b0; // force ECRC
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 256) begin
|
|
m_axis_rq_tkeep_int = 8'b00001111;
|
|
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
|
|
m_axis_rq_tkeep_int = 4'b1111;
|
|
end else begin
|
|
m_axis_rq_tkeep_int = 2'b11;
|
|
end
|
|
|
|
m_axis_rq_tuser_int[3:0] = dword_count == 1 ? first_be & last_be : first_be; // first BE
|
|
m_axis_rq_tuser_int[7:4] = dword_count == 1 ? 4'b0000 : last_be; // last BE
|
|
m_axis_rq_tuser_int[10:8] = 3'd0; // addr_offset
|
|
m_axis_rq_tuser_int[11] = 1'b0; // discontinue
|
|
m_axis_rq_tuser_int[12] = 1'b0; // tph_present
|
|
m_axis_rq_tuser_int[14:13] = 2'b00; // tph_type
|
|
m_axis_rq_tuser_int[15] = 1'b0; // tph_indirect_tag_en
|
|
m_axis_rq_tuser_int[23:16] = 8'd0; // tph_st_tag
|
|
m_axis_rq_tuser_int[27:24] = 4'd0; // seq_num
|
|
m_axis_rq_tuser_int[59:28] = 32'd0; // parity
|
|
|
|
new_tag_ready = 1'b0;
|
|
|
|
// TLP segmentation and request generation
|
|
case (req_state_reg)
|
|
REQ_STATE_IDLE: begin
|
|
s_axis_read_desc_ready_next = enable && !tlp_cmd_valid_reg;
|
|
|
|
if (s_axis_read_desc_ready && s_axis_read_desc_valid) begin
|
|
s_axis_read_desc_ready_next = 1'b0;
|
|
req_pcie_addr_next = s_axis_read_desc_pcie_addr;
|
|
req_axi_addr_next = s_axis_read_desc_axi_addr;
|
|
req_op_count_next = s_axis_read_desc_len;
|
|
tlp_cmd_tag_next = s_axis_read_desc_tag;
|
|
req_state_next = REQ_STATE_START;
|
|
end else begin
|
|
req_state_next = REQ_STATE_IDLE;
|
|
end
|
|
end
|
|
REQ_STATE_START: begin
|
|
if (m_axis_rq_tready_int_reg && !tlp_cmd_valid_reg && new_tag_valid) begin
|
|
if (req_op_count_reg <= {max_read_request_size_dw_reg, 2'b00}-req_pcie_addr_reg[1:0]) begin
|
|
// packet smaller than max read request size
|
|
if (req_pcie_addr_reg[12] != req_pcie_addr_plus_op_count[12]) begin
|
|
// crosses 4k boundary
|
|
req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one TLP
|
|
req_tlp_count_next = req_op_count_reg;
|
|
end
|
|
end else begin
|
|
// packet larger than max read request size
|
|
if (req_pcie_addr_reg[12] != req_pcie_addr_plus_max_read_request[12]) begin
|
|
// crosses 4k boundary
|
|
req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one TLP
|
|
req_tlp_count_next = {max_read_request_size_dw_reg, 2'b00}-req_pcie_addr_reg[1:0];
|
|
end
|
|
end
|
|
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
req_pcie_addr_next = req_pcie_addr_reg + req_tlp_count_next;
|
|
req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
|
|
req_op_count_next = req_op_count_reg - req_tlp_count_next;
|
|
|
|
new_tag_ready = 1'b1;
|
|
|
|
tlp_cmd_addr_next = req_axi_addr_reg;
|
|
tlp_cmd_pcie_tag_next = new_tag;
|
|
tlp_cmd_last_next = req_op_count_next == 0;
|
|
tlp_cmd_valid_next = 1'b1;
|
|
|
|
if (req_op_count_next > 0) begin
|
|
req_state_next = REQ_STATE_START;
|
|
end else begin
|
|
s_axis_read_desc_ready_next = 1'b0;
|
|
req_state_next = REQ_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
req_state_next = REQ_STATE_HEADER;
|
|
end
|
|
end else begin
|
|
req_state_next = REQ_STATE_START;
|
|
end
|
|
end
|
|
REQ_STATE_HEADER: begin
|
|
if (m_axis_rq_tready_int_reg && !tlp_cmd_valid_reg && new_tag_valid) begin
|
|
req_pcie_addr_next = req_pcie_addr_reg + req_tlp_count_next;
|
|
req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
|
|
req_op_count_next = req_op_count_reg - req_tlp_count_next;
|
|
|
|
new_tag_ready = 1'b1;
|
|
|
|
m_axis_rq_tdata_int[10:0] = dword_count; // DWORD count
|
|
m_axis_rq_tdata_int[14:11] = REQ_MEM_READ; // request type - memory read
|
|
m_axis_rq_tdata_int[15] = 1'b0; // poisoned request
|
|
m_axis_rq_tdata_int[31:16] = requester_id;
|
|
m_axis_rq_tdata_int[40:32] = new_tag;
|
|
m_axis_rq_tdata_int[55:41] = 16'd0; // completer ID
|
|
m_axis_rq_tdata_int[56] = requester_id_enable;
|
|
m_axis_rq_tdata_int[59:57] = 3'b000; // traffic class
|
|
m_axis_rq_tdata_int[62:60] = 3'b000; // attr
|
|
m_axis_rq_tdata_int[63] = 1'b0; // force ECRC
|
|
m_axis_rq_tlast_int = 1'b1;
|
|
m_axis_rq_tvalid_int = 1'b1;
|
|
|
|
tlp_cmd_addr_next = req_axi_addr_reg;
|
|
tlp_cmd_pcie_tag_next = new_tag;
|
|
tlp_cmd_last_next = req_op_count_next == 0;
|
|
tlp_cmd_valid_next = 1'b1;
|
|
|
|
if (req_op_count_next > 0) begin
|
|
req_state_next = REQ_STATE_START;
|
|
end else begin
|
|
s_axis_read_desc_ready_next = 1'b0;
|
|
req_state_next = REQ_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
req_state_next = REQ_STATE_HEADER;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
always @* begin
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
|
|
transfer_in_save = 1'b0;
|
|
|
|
finish_tag = 1'b0;
|
|
|
|
tag_table_we_tlp = 1'b0;
|
|
|
|
status_fifo_we = 1'b0;
|
|
|
|
s_axis_rc_tready_next = 1'b0;
|
|
|
|
m_axis_read_desc_status_tag_next = m_axis_read_desc_status_tag_reg;
|
|
m_axis_read_desc_status_valid_next = 1'b0;
|
|
|
|
lower_addr_next = lower_addr_reg;
|
|
byte_count_next = byte_count_reg;
|
|
error_code_next = error_code_reg;
|
|
axi_addr_next = axi_addr_reg;
|
|
op_count_next = op_count_reg;
|
|
tr_count_next = tr_count_reg;
|
|
op_dword_count_next = op_dword_count_reg;
|
|
input_cycle_count_next = input_cycle_count_reg;
|
|
output_cycle_count_next = output_cycle_count_reg;
|
|
input_active_next = input_active_reg;
|
|
bubble_cycle_next = bubble_cycle_reg;
|
|
first_cycle_next = first_cycle_reg;
|
|
last_cycle_next = last_cycle_reg;
|
|
pcie_tag_next = pcie_tag_reg;
|
|
tag_next = tag_reg;
|
|
final_cpl_next = final_cpl_reg;
|
|
offset_next = offset_reg;
|
|
first_cycle_offset_next = first_cycle_offset_reg;
|
|
last_cycle_offset_next = last_cycle_offset_reg;
|
|
|
|
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg;
|
|
|
|
status_fifo_wr_tag = tag_table_tag[pcie_tag_reg];
|
|
status_fifo_wr_last = 1'b1;
|
|
status_fifo_wr_completion = 1'b1;
|
|
|
|
m_axi_awaddr_next = m_axi_awaddr_reg;
|
|
m_axi_awlen_next = m_axi_awlen_reg;
|
|
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
|
|
m_axi_bready_next = 1'b0;
|
|
|
|
m_axi_wdata_int = shift_axis_tdata;
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
|
|
m_axi_wvalid_int = 1'b0;
|
|
m_axi_wlast_int = 1'b0;
|
|
|
|
status_error_cor_next = 1'b0;
|
|
status_error_uncor_next = 1'b0;
|
|
|
|
// TLP response handling and AXI operation generation
|
|
case (tlp_state_reg)
|
|
TLP_STATE_IDLE: begin
|
|
// idle state, wait for completion
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
|
|
if (s_axis_rc_tvalid) begin
|
|
// header fields
|
|
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
|
|
error_code_next = s_axis_rc_tdata[15:12]; // error code
|
|
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
|
|
//s_axis_rc_tdata[29]; // locked read
|
|
//s_axis_rc_tdata[30]; // request completed
|
|
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
|
|
//s_axis_rc_tdata[45:43]; // completion status
|
|
//s_axis_rc_tdata[46]; // poisoned completion
|
|
//s_axis_rc_tdata[63:48]; // requester ID
|
|
pcie_tag_next = s_axis_rc_tdata[71:64]; // tag
|
|
//s_axis_rc_tdata[87:72]; // completer ID
|
|
//s_axis_rc_tdata[91:89]; // attr
|
|
//s_axis_rc_tdata[94:92]; // tc
|
|
|
|
// tuser fields
|
|
//s_axis_rc_tuser[31:0]; // byte enables
|
|
//s_axis_rc_tuser[32]; // is_sof_0
|
|
//s_axis_rc_tuser[33]; // is_sof_1
|
|
//s_axis_rc_tuser[37:34]; // is_eof_0
|
|
//s_axis_rc_tuser[41:38]; // is_eof_1
|
|
//s_axis_rc_tuser[42]; // discontinue
|
|
//s_axis_rc_tuser[74:43]; // parity
|
|
|
|
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
|
|
// more completions to follow
|
|
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
|
|
final_cpl_next = 1'b0;
|
|
end else begin
|
|
// last completion
|
|
op_count_next = byte_count_next;
|
|
final_cpl_next = 1'b1;
|
|
end
|
|
|
|
axi_addr_next = tag_table_axi_addr[pcie_tag_next];
|
|
|
|
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (12+lower_addr_next[1:0]);
|
|
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 12+lower_addr_next[1:0];
|
|
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
|
|
first_cycle_next = 1'b1;
|
|
|
|
if (active_tags[pcie_tag_next] && error_code_next == RC_ERROR_NORMAL_TERMINATION) begin
|
|
// no error
|
|
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
|
|
tlp_state_next = TLP_STATE_START;
|
|
end else if (error_code_next == RC_ERROR_MISMATCH) begin
|
|
// mismatched fields
|
|
// Handle as malformed TLP (2.3.2)
|
|
// drop TLP and report uncorrectable error
|
|
status_error_uncor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else if (!active_tags[pcie_tag_next] || error_code_next == RC_ERROR_INVALID_TAG) begin
|
|
// invalid tag
|
|
// Handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else begin
|
|
// request terminated by other error (tag valid)
|
|
// report error
|
|
case (error_code_next)
|
|
RC_ERROR_POISONED: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.3)
|
|
RC_ERROR_BAD_STATUS: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.1)
|
|
RC_ERROR_INVALID_LENGTH: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
RC_ERROR_MISMATCH: status_error_uncor_next = 1'b1; // malformed TLP (2.3.2)
|
|
RC_ERROR_INVALID_ADDRESS: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
RC_ERROR_INVALID_TAG: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
RC_ERROR_TIMEOUT: status_error_uncor_next = 1'b1; // uncorrectable (6.2.3.2.4.4)
|
|
RC_ERROR_FLR: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
default: status_error_uncor_next = 1'b1;
|
|
endcase
|
|
// release tag
|
|
finish_tag = 1'b1;
|
|
// last request in current transfer
|
|
// enqueue status FIFO entry
|
|
status_fifo_we = 1'b1;
|
|
status_fifo_wr_tag = tag_table_tag[pcie_tag_next];
|
|
status_fifo_wr_last = 1'b1;
|
|
status_fifo_wr_completion = 1'b0;
|
|
// drop TLP
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b1;
|
|
|
|
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
|
|
// header fields
|
|
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
|
|
error_code_next = s_axis_rc_tdata[15:12]; // error code
|
|
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
|
|
//s_axis_rc_tdata[29]; // locked read
|
|
//s_axis_rc_tdata[30]; // request completed
|
|
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
|
|
//s_axis_rc_tdata[45:43]; // completion status
|
|
//s_axis_rc_tdata[46]; // poisoned completion
|
|
//s_axis_rc_tdata[63:48]; // requester ID
|
|
|
|
// tuser fields
|
|
//s_axis_rc_tuser[31:0]; // byte enables
|
|
//s_axis_rc_tuser[32]; // is_sof_0
|
|
//s_axis_rc_tuser[33]; // is_sof_1
|
|
//s_axis_rc_tuser[37:34]; // is_eof_0
|
|
//s_axis_rc_tuser[41:38]; // is_eof_1
|
|
//s_axis_rc_tuser[42]; // discontinue
|
|
//s_axis_rc_tuser[74:43]; // parity
|
|
|
|
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
|
|
// more completions to follow
|
|
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
|
|
final_cpl_next = 1'b0;
|
|
end else begin
|
|
// last completion
|
|
op_count_next = byte_count_next;
|
|
final_cpl_next = 1'b1;
|
|
end
|
|
|
|
if (s_axis_rc_tlast) begin
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
tlp_state_next = TLP_STATE_HEADER;
|
|
end
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end
|
|
end
|
|
TLP_STATE_HEADER: begin
|
|
// header state; process header (64 bit interface only)
|
|
s_axis_rc_tready_next = 1'b0;
|
|
|
|
if (s_axis_rc_tvalid) begin
|
|
pcie_tag_next = s_axis_rc_tdata[7:0]; // tag
|
|
//s_axis_rc_tdata[23:8]; // completer ID
|
|
//s_axis_rc_tdata[27:25]; // attr
|
|
//s_axis_rc_tdata[30:28]; // tc
|
|
|
|
axi_addr_next = tag_table_axi_addr[pcie_tag_next];
|
|
|
|
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (4+lower_addr_reg[1:0]);
|
|
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 4+lower_addr_reg[1:0];
|
|
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
|
|
first_cycle_next = 1'b1;
|
|
|
|
if (active_tags[pcie_tag_next] && error_code_reg == RC_ERROR_NORMAL_TERMINATION) begin
|
|
// no error
|
|
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
|
|
tlp_state_next = TLP_STATE_START;
|
|
end else if (error_code_next == RC_ERROR_MISMATCH) begin
|
|
// mismatched fields
|
|
// Handle as malformed TLP (2.3.2)
|
|
// drop TLP and report uncorrectable error
|
|
status_error_uncor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else if (!active_tags[pcie_tag_next] || error_code_next == RC_ERROR_INVALID_TAG) begin
|
|
// invalid tag or mismatched fields (tag invalid)
|
|
// Handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
// drop TLP and report correctable error
|
|
status_error_cor_next = 1'b1;
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end else begin
|
|
// request terminated by other error (tag valid)
|
|
// report error
|
|
case (error_code_next)
|
|
RC_ERROR_POISONED: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.3)
|
|
RC_ERROR_BAD_STATUS: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.1)
|
|
RC_ERROR_INVALID_LENGTH: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
RC_ERROR_MISMATCH: status_error_uncor_next = 1'b1; // malformed TLP (2.3.2)
|
|
RC_ERROR_INVALID_ADDRESS: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
RC_ERROR_INVALID_TAG: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
RC_ERROR_TIMEOUT: status_error_uncor_next = 1'b1; // uncorrectable (6.2.3.2.4.4)
|
|
RC_ERROR_FLR: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
|
|
default: status_error_uncor_next = 1'b1;
|
|
endcase
|
|
// release tag
|
|
finish_tag = 1'b1;
|
|
// last request in current transfer
|
|
// enqueue status FIFO entry
|
|
status_fifo_we = 1'b1;
|
|
status_fifo_wr_tag = tag_table_tag[pcie_tag_next];
|
|
status_fifo_wr_last = 1'b1;
|
|
status_fifo_wr_completion = 1'b0;
|
|
// drop TLP
|
|
s_axis_rc_tready_next = 1'b1;
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_HEADER;
|
|
end
|
|
end
|
|
TLP_STATE_START: begin
|
|
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
|
|
|
|
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
|
|
transfer_in_save = 1'b1;
|
|
|
|
if (op_count_reg <= AXI_MAX_BURST_SIZE-axi_addr_reg[1:0]) begin
|
|
// packet smaller than max burst size
|
|
if (axi_addr_reg[12] != axi_addr_plus_op_count[12]) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = op_count_reg;
|
|
end
|
|
end else begin
|
|
// packet larger than max burst size
|
|
if (axi_addr_reg[12] != axi_addr_plus_max_burst[12]) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_reg[OFFSET_WIDTH-1:0];
|
|
end
|
|
end
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH == 64) begin
|
|
input_cycle_count_next = (tr_count_next + 4+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
|
|
end else begin
|
|
input_cycle_count_next = (tr_count_next + 12+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
|
|
end
|
|
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
|
|
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
input_active_next = 1'b1;
|
|
|
|
m_axi_awaddr_next = axi_addr_reg;
|
|
m_axi_awlen_next = output_cycle_count_next;
|
|
m_axi_awvalid_next = 1'b1;
|
|
|
|
axi_addr_next = axi_addr_reg + tr_count_next;
|
|
op_count_next = op_count_reg - tr_count_next;
|
|
|
|
input_active_next = input_cycle_count_next > 0;
|
|
input_cycle_count_next = input_cycle_count_next - 1;
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && bubble_cycle_reg && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready);
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_START;
|
|
end
|
|
end
|
|
TLP_STATE_TRANSFER: begin
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_reg && !(first_cycle_reg && !bubble_cycle_reg) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
|
|
|
|
if (m_axi_wready_int_reg && ((s_axis_rc_tready && s_axis_rc_tvalid) || !input_active_reg || (first_cycle_reg && !bubble_cycle_reg)) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready)) begin
|
|
transfer_in_save = s_axis_rc_tready && s_axis_rc_tvalid;
|
|
|
|
if (first_cycle_reg && !bubble_cycle_reg) begin
|
|
m_axi_wdata_int = {save_axis_tdata_reg, {AXIS_PCIE_DATA_WIDTH{1'b0}}} >> ((AXI_STRB_WIDTH-offset_reg)*8);
|
|
end else begin
|
|
m_axi_wdata_int = shift_axis_tdata;
|
|
end
|
|
if (first_cycle_reg) begin
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}} << first_cycle_offset_reg;
|
|
end else begin
|
|
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
|
|
end
|
|
|
|
if (input_active_reg && !(first_cycle_reg && !bubble_cycle_reg)) begin
|
|
input_cycle_count_next = input_cycle_count_reg - 1;
|
|
input_active_next = input_cycle_count_reg > 0;
|
|
end
|
|
output_cycle_count_next = output_cycle_count_reg - 1;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
|
|
if (last_cycle_reg) begin
|
|
if (last_cycle_offset_reg > 0 && op_count_reg == 0) begin
|
|
m_axi_wstrb_int = m_axi_wstrb_int & {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH-last_cycle_offset_reg);
|
|
end
|
|
m_axi_wlast_int = 1'b1;
|
|
end
|
|
m_axi_wvalid_int = 1'b1;
|
|
first_cycle_next = 1'b0;
|
|
if (!last_cycle_reg) begin
|
|
// current transfer not finished yet
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else if (op_count_reg > 0) begin
|
|
// current transfer done, but operation not finished yet
|
|
if (op_count_reg <= AXI_MAX_BURST_SIZE-axi_addr_reg[1:0]) begin
|
|
// packet smaller than max burst size
|
|
if (axi_addr_reg[12] != axi_addr_plus_op_count[12]) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
|
|
m_axi_awlen_next = (tr_count_next - 1) >> AXI_BURST_SIZE;
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = op_count_reg;
|
|
m_axi_awlen_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> AXI_BURST_SIZE;
|
|
end
|
|
end else begin
|
|
// packet larger than max burst size
|
|
if (axi_addr_reg[12] != axi_addr_plus_max_burst[12]) begin
|
|
// crosses 4k boundary
|
|
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
|
|
m_axi_awlen_next = (tr_count_next - 1) >> AXI_BURST_SIZE;
|
|
end else begin
|
|
// does not cross 4k boundary, send one request
|
|
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_reg[OFFSET_WIDTH-1:0];
|
|
m_axi_awlen_next = (tr_count_next - 1) >> AXI_BURST_SIZE;
|
|
end
|
|
end
|
|
|
|
m_axi_awaddr_next = axi_addr_reg;
|
|
|
|
// keep offset, no bubble cycles, not first cycle
|
|
bubble_cycle_next = 1'b0;
|
|
first_cycle_next = 1'b0;
|
|
|
|
input_cycle_count_next = (tr_count_next - offset_reg - 1) >> (AXI_BURST_SIZE);
|
|
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
|
|
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
|
|
last_cycle_next = output_cycle_count_next == 0;
|
|
input_active_next = tr_count_next > offset_reg;
|
|
|
|
axi_addr_next = axi_addr_reg + tr_count_next;
|
|
op_count_next = op_count_reg - tr_count_next;
|
|
|
|
// enqueue status FIFO entry for write completion
|
|
status_fifo_we = 1'b1;
|
|
status_fifo_wr_tag = tag_table_tag[pcie_tag_reg];
|
|
status_fifo_wr_last = 1'b0;
|
|
status_fifo_wr_completion = 1'b1;
|
|
|
|
m_axi_awvalid_next = 1'b1;
|
|
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end else begin
|
|
if (final_cpl_reg) begin
|
|
// last completion in current read request (PCIe tag)
|
|
finish_tag = 1'b1; // release tag
|
|
end else begin
|
|
// more completions to come, store current address
|
|
tag_table_we_tlp = 1'b1;
|
|
end
|
|
|
|
// enqueue status FIFO entry for write completion
|
|
status_fifo_we = 1'b1;
|
|
status_fifo_wr_tag = tag_table_tag[pcie_tag_reg];
|
|
status_fifo_wr_last = final_cpl_reg && tag_table_last[pcie_tag_reg];
|
|
status_fifo_wr_completion = 1'b1;
|
|
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b1;
|
|
end
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_TRANSFER;
|
|
end
|
|
end
|
|
TLP_STATE_WAIT_END: begin
|
|
// wait end state, wait for end of TLP
|
|
s_axis_rc_tready_next = 1'b1;
|
|
|
|
if (s_axis_rc_tready & s_axis_rc_tvalid) begin
|
|
if (s_axis_rc_tlast) begin
|
|
if (AXIS_PCIE_DATA_WIDTH > 64) begin
|
|
s_axis_rc_tready_next = 1'b0;
|
|
end else begin
|
|
s_axis_rc_tready_next = 1'b1;
|
|
end
|
|
tlp_state_next = TLP_STATE_IDLE;
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end
|
|
end else begin
|
|
tlp_state_next = TLP_STATE_WAIT_END;
|
|
end
|
|
end
|
|
endcase
|
|
|
|
if (status_fifo_rd_ptr_reg != status_fifo_wr_ptr_reg) begin
|
|
// status FIFO not empty
|
|
if (status_fifo_completion[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]]) begin
|
|
// completion entry
|
|
if (m_axi_bready && m_axi_bvalid) begin
|
|
// got write completion, pop and return status
|
|
m_axis_read_desc_status_tag_next = status_fifo_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
m_axis_read_desc_status_valid_next = status_fifo_last[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
|
|
m_axi_bready_next = 1'b0;
|
|
end else begin
|
|
// wait for write completion
|
|
m_axi_bready_next = 1'b1;
|
|
end
|
|
end else begin
|
|
// non-completion entry, pop and return status
|
|
m_axis_read_desc_status_tag_next = status_fifo_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
m_axis_read_desc_status_valid_next = status_fifo_last[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
|
|
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
tag_table_we_req = 1'b0;
|
|
tlp_cmd_ready = 1'b0;
|
|
|
|
// tag table write management
|
|
if (tag_table_we_tlp) begin
|
|
|
|
end else if (tlp_cmd_valid_reg) begin
|
|
tlp_cmd_ready = 1'b1;
|
|
tag_table_we_req = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
req_state_reg <= REQ_STATE_IDLE;
|
|
tlp_state_reg <= TLP_STATE_IDLE;
|
|
tlp_cmd_valid_reg <= 1'b0;
|
|
s_axis_rc_tready_reg <= 1'b0;
|
|
s_axis_read_desc_ready_reg <= 1'b0;
|
|
m_axis_read_desc_status_valid_reg <= 1'b0;
|
|
m_axi_awvalid_reg <= 1'b0;
|
|
m_axi_bready_reg <= 1'b0;
|
|
|
|
status_error_cor_reg <= 1'b0;
|
|
status_error_uncor_reg <= 1'b0;
|
|
|
|
status_fifo_wr_ptr_reg <= 0;
|
|
status_fifo_rd_ptr_reg <= 0;
|
|
end else begin
|
|
req_state_reg <= req_state_next;
|
|
tlp_state_reg <= tlp_state_next;
|
|
tlp_cmd_valid_reg <= tlp_cmd_valid_next;
|
|
s_axis_rc_tready_reg <= s_axis_rc_tready_next;
|
|
s_axis_read_desc_ready_reg <= s_axis_read_desc_ready_next;
|
|
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
|
|
m_axi_awvalid_reg <= m_axi_awvalid_next;
|
|
m_axi_bready_reg <= m_axi_bready_next;
|
|
|
|
status_error_cor_reg <= status_error_cor_next;
|
|
status_error_uncor_reg <= status_error_uncor_next;
|
|
|
|
if (status_fifo_we) begin
|
|
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
|
|
end
|
|
status_fifo_rd_ptr_reg <= status_fifo_rd_ptr_next;
|
|
end
|
|
|
|
req_pcie_addr_reg <= req_pcie_addr_next;
|
|
req_axi_addr_reg <= req_axi_addr_next;
|
|
req_op_count_reg <= req_op_count_next;
|
|
req_tlp_count_reg <= req_tlp_count_next;
|
|
|
|
lower_addr_reg <= lower_addr_next;
|
|
byte_count_reg <= byte_count_next;
|
|
error_code_reg <= error_code_next;
|
|
axi_addr_reg <= axi_addr_next;
|
|
op_count_reg <= op_count_next;
|
|
tr_count_reg <= tr_count_next;
|
|
op_dword_count_reg <= op_dword_count_next;
|
|
input_cycle_count_reg <= input_cycle_count_next;
|
|
output_cycle_count_reg <= output_cycle_count_next;
|
|
input_active_reg <= input_active_next;
|
|
bubble_cycle_reg <= bubble_cycle_next;
|
|
first_cycle_reg <= first_cycle_next;
|
|
last_cycle_reg <= last_cycle_next;
|
|
pcie_tag_reg <= pcie_tag_next;
|
|
final_cpl_reg <= final_cpl_next;
|
|
|
|
offset_reg <= offset_next;
|
|
first_cycle_offset_reg <= first_cycle_offset_next;
|
|
last_cycle_offset_reg <= last_cycle_offset_next;
|
|
|
|
tlp_cmd_addr_reg <= tlp_cmd_addr_next;
|
|
tlp_cmd_tag_reg <= tlp_cmd_tag_next;
|
|
tlp_cmd_pcie_tag_reg <= tlp_cmd_pcie_tag_next;
|
|
tlp_cmd_last_reg <= tlp_cmd_last_next;
|
|
|
|
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
|
|
|
|
m_axi_awaddr_reg <= m_axi_awaddr_next;
|
|
m_axi_awlen_reg <= m_axi_awlen_next;
|
|
|
|
max_read_request_size_dw_reg <= 11'd32 << (max_read_request_size > 5 ? 5 : max_read_request_size);
|
|
|
|
if (transfer_in_save) begin
|
|
save_axis_tdata_reg <= s_axis_rc_tdata;
|
|
end
|
|
|
|
if (tag_table_we_tlp) begin
|
|
tag_table_axi_addr[pcie_tag_reg] <= axi_addr_next;
|
|
end else if (tlp_cmd_valid_reg && tag_table_we_req) begin
|
|
tag_table_axi_addr[tlp_cmd_pcie_tag_reg] <= tlp_cmd_addr_reg;
|
|
tag_table_tag[tlp_cmd_pcie_tag_reg] <= tlp_cmd_tag_reg;
|
|
tag_table_last[tlp_cmd_pcie_tag_reg] <= tlp_cmd_last_reg;
|
|
end
|
|
|
|
if (status_fifo_we) begin
|
|
status_fifo_tag[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_tag;
|
|
status_fifo_last[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_last;
|
|
status_fifo_completion[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_completion;
|
|
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
|
|
end
|
|
end
|
|
|
|
// output datapath logic (PCIe TLP)
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next;
|
|
reg m_axis_rq_tlast_reg = 1'b0;
|
|
reg [59:0] m_axis_rq_tuser_reg = 60'd0;
|
|
|
|
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
|
|
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
|
|
reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next;
|
|
reg temp_m_axis_rq_tlast_reg = 1'b0;
|
|
reg [59:0] temp_m_axis_rq_tuser_reg = 60'd0;
|
|
|
|
// datapath control
|
|
reg store_axis_rq_int_to_output;
|
|
reg store_axis_rq_int_to_temp;
|
|
reg store_axis_rq_temp_to_output;
|
|
|
|
assign m_axis_rq_tdata = m_axis_rq_tdata_reg;
|
|
assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg;
|
|
assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg;
|
|
assign m_axis_rq_tlast = m_axis_rq_tlast_reg;
|
|
assign m_axis_rq_tuser = m_axis_rq_tuser_reg;
|
|
|
|
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
|
assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int));
|
|
|
|
always @* begin
|
|
// transfer sink ready state to source
|
|
m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg;
|
|
temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
|
|
|
|
store_axis_rq_int_to_output = 1'b0;
|
|
store_axis_rq_int_to_temp = 1'b0;
|
|
store_axis_rq_temp_to_output = 1'b0;
|
|
|
|
if (m_axis_rq_tready_int_reg) begin
|
|
// input is ready
|
|
if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin
|
|
// output is ready or currently not valid, transfer data to output
|
|
m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
|
|
store_axis_rq_int_to_output = 1'b1;
|
|
end else begin
|
|
// output is not ready, store input in temp
|
|
temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
|
|
store_axis_rq_int_to_temp = 1'b1;
|
|
end
|
|
end else if (m_axis_rq_tready) begin
|
|
// input is not ready, but output is ready
|
|
m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
|
|
temp_m_axis_rq_tvalid_next = 1'b0;
|
|
store_axis_rq_temp_to_output = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
m_axis_rq_tvalid_reg <= 1'b0;
|
|
m_axis_rq_tready_int_reg <= 1'b0;
|
|
temp_m_axis_rq_tvalid_reg <= 1'b0;
|
|
end else begin
|
|
m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next;
|
|
m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early;
|
|
temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next;
|
|
end
|
|
|
|
// datapath
|
|
if (store_axis_rq_int_to_output) begin
|
|
m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
|
|
m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
|
|
m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
|
|
m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
|
|
end else if (store_axis_rq_temp_to_output) begin
|
|
m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg;
|
|
m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg;
|
|
m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg;
|
|
m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg;
|
|
end
|
|
|
|
if (store_axis_rq_int_to_temp) begin
|
|
temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
|
|
temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
|
|
temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
|
|
temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
|
|
end
|
|
end
|
|
|
|
// output datapath logic (AXI write data)
|
|
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
|
|
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
|
|
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
|
|
reg m_axi_wlast_reg = 1'b0;
|
|
|
|
reg [AXI_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
|
|
reg [AXI_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
|
|
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
|
|
reg temp_m_axi_wlast_reg = 1'b0;
|
|
|
|
// datapath control
|
|
reg store_axi_w_int_to_output;
|
|
reg store_axi_w_int_to_temp;
|
|
reg store_axi_w_temp_to_output;
|
|
|
|
assign m_axi_wdata = m_axi_wdata_reg;
|
|
assign m_axi_wstrb = m_axi_wstrb_reg;
|
|
assign m_axi_wvalid = m_axi_wvalid_reg;
|
|
assign m_axi_wlast = m_axi_wlast_reg;
|
|
|
|
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
|
|
assign m_axi_wready_int_early = m_axi_wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !m_axi_wvalid_int));
|
|
|
|
always @* begin
|
|
// transfer sink ready state to source
|
|
m_axi_wvalid_next = m_axi_wvalid_reg;
|
|
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
|
|
|
|
store_axi_w_int_to_output = 1'b0;
|
|
store_axi_w_int_to_temp = 1'b0;
|
|
store_axi_w_temp_to_output = 1'b0;
|
|
|
|
if (m_axi_wready_int_reg) begin
|
|
// input is ready
|
|
if (m_axi_wready || !m_axi_wvalid_reg) begin
|
|
// output is ready or currently not valid, transfer data to output
|
|
m_axi_wvalid_next = m_axi_wvalid_int;
|
|
store_axi_w_int_to_output = 1'b1;
|
|
end else begin
|
|
// output is not ready, store input in temp
|
|
temp_m_axi_wvalid_next = m_axi_wvalid_int;
|
|
store_axi_w_int_to_temp = 1'b1;
|
|
end
|
|
end else if (m_axi_wready) begin
|
|
// input is not ready, but output is ready
|
|
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
|
|
temp_m_axi_wvalid_next = 1'b0;
|
|
store_axi_w_temp_to_output = 1'b1;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
m_axi_wvalid_reg <= 1'b0;
|
|
m_axi_wready_int_reg <= 1'b0;
|
|
temp_m_axi_wvalid_reg <= 1'b0;
|
|
end else begin
|
|
m_axi_wvalid_reg <= m_axi_wvalid_next;
|
|
m_axi_wready_int_reg <= m_axi_wready_int_early;
|
|
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
|
|
end
|
|
|
|
// datapath
|
|
if (store_axi_w_int_to_output) begin
|
|
m_axi_wdata_reg <= m_axi_wdata_int;
|
|
m_axi_wstrb_reg <= m_axi_wstrb_int;
|
|
m_axi_wlast_reg <= m_axi_wlast_int;
|
|
end else if (store_axi_w_temp_to_output) begin
|
|
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
|
|
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
|
|
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
|
|
end
|
|
|
|
if (store_axi_w_int_to_temp) begin
|
|
temp_m_axi_wdata_reg <= m_axi_wdata_int;
|
|
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
|
|
temp_m_axi_wlast_reg <= m_axi_wlast_int;
|
|
end
|
|
end
|
|
|
|
endmodule
|