1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/pcie_us_axi_dma_rd.v
2019-03-03 13:37:34 -08:00

1286 lines
55 KiB
Verilog

/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Ultrascale PCIe AXI DMA Read
*/
module pcie_us_axi_dma_rd #
(
parameter AXIS_PCIE_DATA_WIDTH = 256,
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
parameter AXI_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH,
parameter AXI_ADDR_WIDTH = 64,
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
parameter AXI_ID_WIDTH = 8,
parameter AXI_MAX_BURST_LEN = 256,
parameter PCIE_ADDR_WIDTH = 64,
parameter PCIE_CLIENT_TAG = 1,
parameter PCIE_TAG_COUNT = 32,
parameter PCIE_TAG_WIDTH = $clog2(PCIE_TAG_COUNT),
parameter PCIE_EXT_TAG_ENABLE = 0,
parameter LEN_WIDTH = 20,
parameter TAG_WIDTH = 8
)
(
input wire clk,
input wire rst,
/*
* AXI input (RC)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rc_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rc_tkeep,
input wire s_axis_rc_tvalid,
output wire s_axis_rc_tready,
input wire s_axis_rc_tlast,
input wire [74:0] s_axis_rc_tuser,
/*
* AXI output (RQ)
*/
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata,
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep,
output wire m_axis_rq_tvalid,
input wire m_axis_rq_tready,
output wire m_axis_rq_tlast,
output wire [59:0] m_axis_rq_tuser,
/*
* Tag input
*/
input wire [PCIE_TAG_WIDTH-1:0] s_axis_pcie_rq_tag,
input wire s_axis_pcie_rq_tag_valid,
/*
* AXI read descriptor input
*/
input wire [PCIE_ADDR_WIDTH-1:0] s_axis_read_desc_pcie_addr,
input wire [AXI_ADDR_WIDTH-1:0] s_axis_read_desc_axi_addr,
input wire [LEN_WIDTH-1:0] s_axis_read_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_read_desc_tag,
input wire s_axis_read_desc_valid,
output wire s_axis_read_desc_ready,
/*
* AXI read descriptor status output
*/
output wire [TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
output wire m_axis_read_desc_status_valid,
/*
* AXI master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire m_axi_bvalid,
output wire m_axi_bready,
/*
* Configuration
*/
input wire enable,
input wire ext_tag_enable,
input wire [15:0] requester_id,
input wire requester_id_enable,
input wire [2:0] max_read_request_size,
/*
* Status
*/
output wire status_error_cor,
output wire status_error_uncor
);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8);
parameter STATUS_FIFO_ADDR_WIDTH = 5;
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256) begin
$error("Error: PCIe interface width must be 64, 128, or 256");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity");
$finish;
end
if (AXI_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: AXI interface width must match PCIe interface width");
$finish;
end
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
$error("Error: AXI interface requires byte (8-bit) granularity");
$finish;
end
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256");
$finish;
end
end
localparam [3:0]
REQ_MEM_READ = 4'b0000,
REQ_MEM_WRITE = 4'b0001,
REQ_IO_READ = 4'b0010,
REQ_IO_WRITE = 4'b0011,
REQ_MEM_FETCH_ADD = 4'b0100,
REQ_MEM_SWAP = 4'b0101,
REQ_MEM_CAS = 4'b0110,
REQ_MEM_READ_LOCKED = 4'b0111,
REQ_CFG_READ_0 = 4'b1000,
REQ_CFG_READ_1 = 4'b1001,
REQ_CFG_WRITE_0 = 4'b1010,
REQ_CFG_WRITE_1 = 4'b1011,
REQ_MSG = 4'b1100,
REQ_MSG_VENDOR = 4'b1101,
REQ_MSG_ATS = 4'b1110;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [4:0]
RC_ERROR_NORMAL_TERMINATION = 4'b0000,
RC_ERROR_POISONED = 4'b0001,
RC_ERROR_BAD_STATUS = 4'b0010,
RC_ERROR_INVALID_LENGTH = 4'b0011,
RC_ERROR_MISMATCH = 4'b0100,
RC_ERROR_INVALID_ADDRESS = 4'b0101,
RC_ERROR_INVALID_TAG = 4'b0110,
RC_ERROR_TIMEOUT = 4'b1001,
RC_ERROR_FLR = 4'b1000;
localparam [1:0]
REQ_STATE_IDLE = 2'd0,
REQ_STATE_START = 2'd1,
REQ_STATE_HEADER = 2'd2;
reg [1:0] req_state_reg = REQ_STATE_IDLE, req_state_next;
localparam [2:0]
TLP_STATE_IDLE = 3'd0,
TLP_STATE_HEADER = 3'd1,
TLP_STATE_START = 3'd2,
TLP_STATE_TRANSFER = 3'd3,
TLP_STATE_WAIT_END = 3'd4;
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
// datapath control signals
reg transfer_in_save;
reg tag_table_we_req;
reg tag_table_we_tlp;
reg status_fifo_we;
reg tlp_cmd_ready;
reg finish_tag;
reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, req_pcie_addr_next;
reg [AXI_ADDR_WIDTH-1:0] req_axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, req_axi_addr_next;
reg [LEN_WIDTH-1:0] req_op_count_reg = {LEN_WIDTH{1'b0}}, req_op_count_next;
reg [LEN_WIDTH-1:0] req_tlp_count_reg = {LEN_WIDTH{1'b0}}, req_tlp_count_next;
reg [11:0] lower_addr_reg = 12'd0, lower_addr_next;
reg [12:0] byte_count_reg = 13'd0, byte_count_next;
reg [3:0] error_code_reg = 4'd0, error_code_next;
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
reg [9:0] op_dword_count_reg = 10'd0, op_dword_count_next;
reg [12:0] op_count_reg = 13'd0, op_count_next;
reg [12:0] tr_count_reg = 13'd0, tr_count_next;
reg [11:0] input_cycle_count_reg = 12'd0, input_cycle_count_next;
reg [11:0] output_cycle_count_reg = 12'd0, output_cycle_count_next;
reg input_active_reg = 1'b0, input_active_next;
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
reg first_cycle_reg = 1'b0, first_cycle_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, pcie_tag_next;
reg [TAG_WIDTH-1:0] tag_reg = {TAG_WIDTH{1'b0}}, tag_next;
reg final_cpl_reg = 1'b0, final_cpl_next;
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
reg [OFFSET_WIDTH-1:0] first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, first_cycle_offset_next;
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
reg [AXI_ADDR_WIDTH-1:0] tlp_cmd_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, tlp_cmd_addr_next;
reg [TAG_WIDTH-1:0] tlp_cmd_tag_reg = {TAG_WIDTH{1'b0}}, tlp_cmd_tag_next;
reg [PCIE_TAG_WIDTH-1:0] tlp_cmd_pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, tlp_cmd_pcie_tag_next;
reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next;
reg tlp_cmd_valid_reg = 1'b0, tlp_cmd_valid_next;
reg [AXI_ADDR_WIDTH-1:0] tag_table_axi_addr[(2**PCIE_TAG_WIDTH)-1:0];
reg [TAG_WIDTH-1:0] tag_table_tag[(2**PCIE_TAG_WIDTH)-1:0];
reg tag_table_last[(2**PCIE_TAG_WIDTH)-1:0];
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_wr_ptr_reg = 0, status_fifo_wr_ptr_next;
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_rd_ptr_reg = 0, status_fifo_rd_ptr_next;
reg [TAG_WIDTH-1:0] status_fifo_tag[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg status_fifo_last[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg status_fifo_completion[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg [TAG_WIDTH-1:0] status_fifo_wr_tag;
reg status_fifo_wr_last;
reg status_fifo_wr_completion;
reg [10:0] max_read_request_size_dw_reg = 11'd0;
reg s_axis_rc_tready_reg = 1'b0, s_axis_rc_tready_next;
reg s_axis_read_desc_ready_reg = 1'b0, s_axis_read_desc_ready_next;
reg [TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
reg m_axis_read_desc_status_valid_reg = 1'b0, m_axis_read_desc_status_valid_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
reg status_error_cor_reg = 1'b0, status_error_cor_next;
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
reg [AXIS_PCIE_DATA_WIDTH-1:0] save_axis_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
wire [AXI_DATA_WIDTH-1:0] shift_axis_tdata = {s_axis_rc_tdata, save_axis_tdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE);
// internal datapath
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int;
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int;
reg m_axis_rq_tvalid_int;
reg m_axis_rq_tready_int_reg = 1'b0;
reg m_axis_rq_tlast_int;
reg [59:0] m_axis_rq_tuser_int;
wire m_axis_rq_tready_int_early;
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int;
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int;
reg m_axi_wvalid_int;
reg m_axi_wready_int_reg = 1'b0;
reg m_axi_wlast_int;
wire m_axi_wready_int_early;
assign s_axis_rc_tready = s_axis_rc_tready_reg;
assign s_axis_read_desc_ready = s_axis_read_desc_ready_reg;
assign m_axis_read_desc_status_tag = m_axis_read_desc_status_tag_reg;
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
assign m_axi_awid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = $clog2(AXI_STRB_WIDTH);
assign m_axi_awburst = 2'b01;
assign m_axi_awlock = 1'b0;
assign m_axi_awcache = 4'b0011;
assign m_axi_awprot = 3'b010;
assign m_axi_awvalid = m_axi_awvalid_reg;
assign m_axi_bready = m_axi_bready_reg;
assign status_error_cor = status_error_cor_reg;
assign status_error_uncor = status_error_uncor_reg;
wire [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_plus_max_read_request = req_pcie_addr_reg + {max_read_request_size_dw_reg, 2'b00};
wire [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_plus_op_count = req_pcie_addr_reg + req_op_count_reg;
wire [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_plus_tlp_count = req_pcie_addr_reg + req_tlp_count_reg;
wire [AXI_ADDR_WIDTH-1:0] axi_addr_plus_max_burst = axi_addr_reg + AXI_MAX_BURST_SIZE;
wire [AXI_ADDR_WIDTH-1:0] axi_addr_plus_op_count = axi_addr_reg + op_count_reg;
wire [3:0] first_be = 4'b1111 << req_pcie_addr_reg[1:0];
wire [3:0] last_be = 4'b1111 >> (3 - ((req_pcie_addr_reg[1:0] + req_tlp_count_next[1:0] - 1) & 3));
wire [10:0] dword_count = (req_tlp_count_next + req_pcie_addr_reg[1:0] + 3) >> 2;
wire [PCIE_TAG_WIDTH-1:0] new_tag;
wire new_tag_valid;
reg new_tag_ready;
wire [PCIE_TAG_COUNT-1:0] active_tags;
pcie_tag_manager #(
.PCIE_TAG_COUNT(PCIE_TAG_COUNT),
.PCIE_TAG_WIDTH(PCIE_TAG_WIDTH),
.PCIE_EXT_TAG_ENABLE(PCIE_EXT_TAG_ENABLE)
)
pcie_tag_manager_inst (
.clk(clk),
.rst(rst),
.m_axis_tag(new_tag),
.m_axis_tag_valid(new_tag_valid),
.m_axis_tag_ready(new_tag_ready),
.s_axis_tag(pcie_tag_reg),
.s_axis_tag_valid(finish_tag),
.ext_tag_enable(ext_tag_enable),
.active_tags(active_tags)
);
always @* begin
req_state_next = REQ_STATE_IDLE;
s_axis_read_desc_ready_next = 1'b0;
req_pcie_addr_next = req_pcie_addr_reg;
req_axi_addr_next = req_axi_addr_reg;
req_op_count_next = req_op_count_reg;
req_tlp_count_next = req_tlp_count_reg;
tlp_cmd_addr_next = tlp_cmd_addr_reg;
tlp_cmd_tag_next = tlp_cmd_tag_reg;
tlp_cmd_pcie_tag_next = tlp_cmd_pcie_tag_reg;
tlp_cmd_last_next = tlp_cmd_last_reg;
tlp_cmd_valid_next = tlp_cmd_valid_reg && !tlp_cmd_ready;
m_axis_rq_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}};
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
m_axis_rq_tvalid_int = 1'b0;
if (AXIS_PCIE_DATA_WIDTH > 64) begin
m_axis_rq_tlast_int = 1'b1;
end else begin
m_axis_rq_tlast_int = 1'b0;
end
m_axis_rq_tuser_int = 60'd0;
m_axis_rq_tdata_int[1:0] = 2'b0; // address type
m_axis_rq_tdata_int[63:2] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address
if (AXIS_PCIE_DATA_WIDTH > 64) begin
m_axis_rq_tdata_int[74:64] = dword_count; // DWORD count
m_axis_rq_tdata_int[78:75] = REQ_MEM_READ; // request type - memory read
m_axis_rq_tdata_int[79] = 1'b0; // poisoned request
m_axis_rq_tdata_int[95:80] = requester_id;
m_axis_rq_tdata_int[103:96] = new_tag;
m_axis_rq_tdata_int[119:104] = 16'd0; // completer ID
m_axis_rq_tdata_int[120] = requester_id_enable;
m_axis_rq_tdata_int[123:121] = 3'b000; // traffic class
m_axis_rq_tdata_int[126:124] = 3'b000; // attr
m_axis_rq_tdata_int[127] = 1'b0; // force ECRC
end
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_rq_tkeep_int = 8'b00001111;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_rq_tkeep_int = 4'b1111;
end else begin
m_axis_rq_tkeep_int = 2'b11;
end
m_axis_rq_tuser_int[3:0] = dword_count == 1 ? first_be & last_be : first_be; // first BE
m_axis_rq_tuser_int[7:4] = dword_count == 1 ? 4'b0000 : last_be; // last BE
m_axis_rq_tuser_int[10:8] = 3'd0; // addr_offset
m_axis_rq_tuser_int[11] = 1'b0; // discontinue
m_axis_rq_tuser_int[12] = 1'b0; // tph_present
m_axis_rq_tuser_int[14:13] = 2'b00; // tph_type
m_axis_rq_tuser_int[15] = 1'b0; // tph_indirect_tag_en
m_axis_rq_tuser_int[23:16] = 8'd0; // tph_st_tag
m_axis_rq_tuser_int[27:24] = 4'd0; // seq_num
m_axis_rq_tuser_int[59:28] = 32'd0; // parity
new_tag_ready = 1'b0;
// TLP segmentation and request generation
case (req_state_reg)
REQ_STATE_IDLE: begin
s_axis_read_desc_ready_next = enable && !tlp_cmd_valid_reg;
if (s_axis_read_desc_ready && s_axis_read_desc_valid) begin
s_axis_read_desc_ready_next = 1'b0;
req_pcie_addr_next = s_axis_read_desc_pcie_addr;
req_axi_addr_next = s_axis_read_desc_axi_addr;
req_op_count_next = s_axis_read_desc_len;
tlp_cmd_tag_next = s_axis_read_desc_tag;
req_state_next = REQ_STATE_START;
end else begin
req_state_next = REQ_STATE_IDLE;
end
end
REQ_STATE_START: begin
if (m_axis_rq_tready_int_reg && !tlp_cmd_valid_reg && new_tag_valid) begin
if (req_op_count_reg <= {max_read_request_size_dw_reg, 2'b00}-req_pcie_addr_reg[1:0]) begin
// packet smaller than max read request size
if (req_pcie_addr_reg[12] != req_pcie_addr_plus_op_count[12]) begin
// crosses 4k boundary
req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one TLP
req_tlp_count_next = req_op_count_reg;
end
end else begin
// packet larger than max read request size
if (req_pcie_addr_reg[12] != req_pcie_addr_plus_max_read_request[12]) begin
// crosses 4k boundary
req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one TLP
req_tlp_count_next = {max_read_request_size_dw_reg, 2'b00}-req_pcie_addr_reg[1:0];
end
end
m_axis_rq_tvalid_int = 1'b1;
if (AXIS_PCIE_DATA_WIDTH > 64) begin
req_pcie_addr_next = req_pcie_addr_reg + req_tlp_count_next;
req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
req_op_count_next = req_op_count_reg - req_tlp_count_next;
new_tag_ready = 1'b1;
tlp_cmd_addr_next = req_axi_addr_reg;
tlp_cmd_pcie_tag_next = new_tag;
tlp_cmd_last_next = req_op_count_next == 0;
tlp_cmd_valid_next = 1'b1;
if (req_op_count_next > 0) begin
req_state_next = REQ_STATE_START;
end else begin
s_axis_read_desc_ready_next = 1'b0;
req_state_next = REQ_STATE_IDLE;
end
end else begin
req_state_next = REQ_STATE_HEADER;
end
end else begin
req_state_next = REQ_STATE_START;
end
end
REQ_STATE_HEADER: begin
if (m_axis_rq_tready_int_reg && !tlp_cmd_valid_reg && new_tag_valid) begin
req_pcie_addr_next = req_pcie_addr_reg + req_tlp_count_next;
req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
req_op_count_next = req_op_count_reg - req_tlp_count_next;
new_tag_ready = 1'b1;
m_axis_rq_tdata_int[10:0] = dword_count; // DWORD count
m_axis_rq_tdata_int[14:11] = REQ_MEM_READ; // request type - memory read
m_axis_rq_tdata_int[15] = 1'b0; // poisoned request
m_axis_rq_tdata_int[31:16] = requester_id;
m_axis_rq_tdata_int[40:32] = new_tag;
m_axis_rq_tdata_int[55:41] = 16'd0; // completer ID
m_axis_rq_tdata_int[56] = requester_id_enable;
m_axis_rq_tdata_int[59:57] = 3'b000; // traffic class
m_axis_rq_tdata_int[62:60] = 3'b000; // attr
m_axis_rq_tdata_int[63] = 1'b0; // force ECRC
m_axis_rq_tlast_int = 1'b1;
m_axis_rq_tvalid_int = 1'b1;
tlp_cmd_addr_next = req_axi_addr_reg;
tlp_cmd_pcie_tag_next = new_tag;
tlp_cmd_last_next = req_op_count_next == 0;
tlp_cmd_valid_next = 1'b1;
if (req_op_count_next > 0) begin
req_state_next = REQ_STATE_START;
end else begin
s_axis_read_desc_ready_next = 1'b0;
req_state_next = REQ_STATE_IDLE;
end
end else begin
req_state_next = REQ_STATE_HEADER;
end
end
endcase
end
always @* begin
tlp_state_next = TLP_STATE_IDLE;
transfer_in_save = 1'b0;
finish_tag = 1'b0;
tag_table_we_tlp = 1'b0;
status_fifo_we = 1'b0;
s_axis_rc_tready_next = 1'b0;
m_axis_read_desc_status_tag_next = m_axis_read_desc_status_tag_reg;
m_axis_read_desc_status_valid_next = 1'b0;
lower_addr_next = lower_addr_reg;
byte_count_next = byte_count_reg;
error_code_next = error_code_reg;
axi_addr_next = axi_addr_reg;
op_count_next = op_count_reg;
tr_count_next = tr_count_reg;
op_dword_count_next = op_dword_count_reg;
input_cycle_count_next = input_cycle_count_reg;
output_cycle_count_next = output_cycle_count_reg;
input_active_next = input_active_reg;
bubble_cycle_next = bubble_cycle_reg;
first_cycle_next = first_cycle_reg;
last_cycle_next = last_cycle_reg;
pcie_tag_next = pcie_tag_reg;
tag_next = tag_reg;
final_cpl_next = final_cpl_reg;
offset_next = offset_reg;
first_cycle_offset_next = first_cycle_offset_reg;
last_cycle_offset_next = last_cycle_offset_reg;
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg;
status_fifo_wr_tag = tag_table_tag[pcie_tag_reg];
status_fifo_wr_last = 1'b1;
status_fifo_wr_completion = 1'b1;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
m_axi_bready_next = 1'b0;
m_axi_wdata_int = shift_axis_tdata;
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
m_axi_wvalid_int = 1'b0;
m_axi_wlast_int = 1'b0;
status_error_cor_next = 1'b0;
status_error_uncor_next = 1'b0;
// TLP response handling and AXI operation generation
case (tlp_state_reg)
TLP_STATE_IDLE: begin
// idle state, wait for completion
if (AXIS_PCIE_DATA_WIDTH > 64) begin
s_axis_rc_tready_next = 1'b0;
if (s_axis_rc_tvalid) begin
// header fields
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
error_code_next = s_axis_rc_tdata[15:12]; // error code
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
//s_axis_rc_tdata[29]; // locked read
//s_axis_rc_tdata[30]; // request completed
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
//s_axis_rc_tdata[45:43]; // completion status
//s_axis_rc_tdata[46]; // poisoned completion
//s_axis_rc_tdata[63:48]; // requester ID
pcie_tag_next = s_axis_rc_tdata[71:64]; // tag
//s_axis_rc_tdata[87:72]; // completer ID
//s_axis_rc_tdata[91:89]; // attr
//s_axis_rc_tdata[94:92]; // tc
// tuser fields
//s_axis_rc_tuser[31:0]; // byte enables
//s_axis_rc_tuser[32]; // is_sof_0
//s_axis_rc_tuser[33]; // is_sof_1
//s_axis_rc_tuser[37:34]; // is_eof_0
//s_axis_rc_tuser[41:38]; // is_eof_1
//s_axis_rc_tuser[42]; // discontinue
//s_axis_rc_tuser[74:43]; // parity
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
// more completions to follow
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
final_cpl_next = 1'b0;
end else begin
// last completion
op_count_next = byte_count_next;
final_cpl_next = 1'b1;
end
axi_addr_next = tag_table_axi_addr[pcie_tag_next];
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (12+lower_addr_next[1:0]);
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 12+lower_addr_next[1:0];
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
first_cycle_next = 1'b1;
if (active_tags[pcie_tag_next] && error_code_next == RC_ERROR_NORMAL_TERMINATION) begin
// no error
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
tlp_state_next = TLP_STATE_START;
end else if (error_code_next == RC_ERROR_MISMATCH) begin
// mismatched fields
// Handle as malformed TLP (2.3.2)
// drop TLP and report uncorrectable error
status_error_uncor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else if (!active_tags[pcie_tag_next] || error_code_next == RC_ERROR_INVALID_TAG) begin
// invalid tag
// Handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else begin
// request terminated by other error (tag valid)
// report error
case (error_code_next)
RC_ERROR_POISONED: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.3)
RC_ERROR_BAD_STATUS: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.1)
RC_ERROR_INVALID_LENGTH: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
RC_ERROR_MISMATCH: status_error_uncor_next = 1'b1; // malformed TLP (2.3.2)
RC_ERROR_INVALID_ADDRESS: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
RC_ERROR_INVALID_TAG: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
RC_ERROR_TIMEOUT: status_error_uncor_next = 1'b1; // uncorrectable (6.2.3.2.4.4)
RC_ERROR_FLR: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
default: status_error_uncor_next = 1'b1;
endcase
// release tag
finish_tag = 1'b1;
// last request in current transfer
// enqueue status FIFO entry
status_fifo_we = 1'b1;
status_fifo_wr_tag = tag_table_tag[pcie_tag_next];
status_fifo_wr_last = 1'b1;
status_fifo_wr_completion = 1'b0;
// drop TLP
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end
end else begin
s_axis_rc_tready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
s_axis_rc_tready_next = 1'b1;
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
// header fields
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
error_code_next = s_axis_rc_tdata[15:12]; // error code
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
//s_axis_rc_tdata[29]; // locked read
//s_axis_rc_tdata[30]; // request completed
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
//s_axis_rc_tdata[45:43]; // completion status
//s_axis_rc_tdata[46]; // poisoned completion
//s_axis_rc_tdata[63:48]; // requester ID
// tuser fields
//s_axis_rc_tuser[31:0]; // byte enables
//s_axis_rc_tuser[32]; // is_sof_0
//s_axis_rc_tuser[33]; // is_sof_1
//s_axis_rc_tuser[37:34]; // is_eof_0
//s_axis_rc_tuser[41:38]; // is_eof_1
//s_axis_rc_tuser[42]; // discontinue
//s_axis_rc_tuser[74:43]; // parity
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
// more completions to follow
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
final_cpl_next = 1'b0;
end else begin
// last completion
op_count_next = byte_count_next;
final_cpl_next = 1'b1;
end
if (s_axis_rc_tlast) begin
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_IDLE;
end else begin
s_axis_rc_tready_next = 1'b0;
tlp_state_next = TLP_STATE_HEADER;
end
end else begin
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_IDLE;
end
end
end
TLP_STATE_HEADER: begin
// header state; process header (64 bit interface only)
s_axis_rc_tready_next = 1'b0;
if (s_axis_rc_tvalid) begin
pcie_tag_next = s_axis_rc_tdata[7:0]; // tag
//s_axis_rc_tdata[23:8]; // completer ID
//s_axis_rc_tdata[27:25]; // attr
//s_axis_rc_tdata[30:28]; // tc
axi_addr_next = tag_table_axi_addr[pcie_tag_next];
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (4+lower_addr_reg[1:0]);
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 4+lower_addr_reg[1:0];
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
first_cycle_next = 1'b1;
if (active_tags[pcie_tag_next] && error_code_reg == RC_ERROR_NORMAL_TERMINATION) begin
// no error
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
tlp_state_next = TLP_STATE_START;
end else if (error_code_next == RC_ERROR_MISMATCH) begin
// mismatched fields
// Handle as malformed TLP (2.3.2)
// drop TLP and report uncorrectable error
status_error_uncor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else if (!active_tags[pcie_tag_next] || error_code_next == RC_ERROR_INVALID_TAG) begin
// invalid tag or mismatched fields (tag invalid)
// Handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else begin
// request terminated by other error (tag valid)
// report error
case (error_code_next)
RC_ERROR_POISONED: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.3)
RC_ERROR_BAD_STATUS: status_error_cor_next = 1'b1; // advisory non-fatal (6.2.3.2.4.1)
RC_ERROR_INVALID_LENGTH: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
RC_ERROR_MISMATCH: status_error_uncor_next = 1'b1; // malformed TLP (2.3.2)
RC_ERROR_INVALID_ADDRESS: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
RC_ERROR_INVALID_TAG: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
RC_ERROR_TIMEOUT: status_error_uncor_next = 1'b1; // uncorrectable (6.2.3.2.4.4)
RC_ERROR_FLR: status_error_cor_next = 1'b1; // unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
default: status_error_uncor_next = 1'b1;
endcase
// release tag
finish_tag = 1'b1;
// last request in current transfer
// enqueue status FIFO entry
status_fifo_we = 1'b1;
status_fifo_wr_tag = tag_table_tag[pcie_tag_next];
status_fifo_wr_last = 1'b1;
status_fifo_wr_completion = 1'b0;
// drop TLP
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end
end else begin
tlp_state_next = TLP_STATE_HEADER;
end
end
TLP_STATE_START: begin
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
transfer_in_save = 1'b1;
if (op_count_reg <= AXI_MAX_BURST_SIZE-axi_addr_reg[1:0]) begin
// packet smaller than max burst size
if (axi_addr_reg[12] != axi_addr_plus_op_count[12]) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = op_count_reg;
end
end else begin
// packet larger than max burst size
if (axi_addr_reg[12] != axi_addr_plus_max_burst[12]) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_reg[OFFSET_WIDTH-1:0];
end
end
if (AXIS_PCIE_DATA_WIDTH == 64) begin
input_cycle_count_next = (tr_count_next + 4+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
end else begin
input_cycle_count_next = (tr_count_next + 12+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
end
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
last_cycle_next = output_cycle_count_next == 0;
input_active_next = 1'b1;
m_axi_awaddr_next = axi_addr_reg;
m_axi_awlen_next = output_cycle_count_next;
m_axi_awvalid_next = 1'b1;
axi_addr_next = axi_addr_reg + tr_count_next;
op_count_next = op_count_reg - tr_count_next;
input_active_next = input_cycle_count_next > 0;
input_cycle_count_next = input_cycle_count_next - 1;
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && bubble_cycle_reg && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready);
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
tlp_state_next = TLP_STATE_START;
end
end
TLP_STATE_TRANSFER: begin
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_reg && !(first_cycle_reg && !bubble_cycle_reg) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
if (m_axi_wready_int_reg && ((s_axis_rc_tready && s_axis_rc_tvalid) || !input_active_reg || (first_cycle_reg && !bubble_cycle_reg)) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready)) begin
transfer_in_save = s_axis_rc_tready && s_axis_rc_tvalid;
if (first_cycle_reg && !bubble_cycle_reg) begin
m_axi_wdata_int = {save_axis_tdata_reg, {AXIS_PCIE_DATA_WIDTH{1'b0}}} >> ((AXI_STRB_WIDTH-offset_reg)*8);
end else begin
m_axi_wdata_int = shift_axis_tdata;
end
if (first_cycle_reg) begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}} << first_cycle_offset_reg;
end else begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
end
if (input_active_reg && !(first_cycle_reg && !bubble_cycle_reg)) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
if (last_cycle_reg) begin
if (last_cycle_offset_reg > 0 && op_count_reg == 0) begin
m_axi_wstrb_int = m_axi_wstrb_int & {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH-last_cycle_offset_reg);
end
m_axi_wlast_int = 1'b1;
end
m_axi_wvalid_int = 1'b1;
first_cycle_next = 1'b0;
if (!last_cycle_reg) begin
// current transfer not finished yet
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
tlp_state_next = TLP_STATE_TRANSFER;
end else if (op_count_reg > 0) begin
// current transfer done, but operation not finished yet
if (op_count_reg <= AXI_MAX_BURST_SIZE-axi_addr_reg[1:0]) begin
// packet smaller than max burst size
if (axi_addr_reg[12] != axi_addr_plus_op_count[12]) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
m_axi_awlen_next = (tr_count_next - 1) >> AXI_BURST_SIZE;
end else begin
// does not cross 4k boundary, send one request
tr_count_next = op_count_reg;
m_axi_awlen_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> AXI_BURST_SIZE;
end
end else begin
// packet larger than max burst size
if (axi_addr_reg[12] != axi_addr_plus_max_burst[12]) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
m_axi_awlen_next = (tr_count_next - 1) >> AXI_BURST_SIZE;
end else begin
// does not cross 4k boundary, send one request
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_reg[OFFSET_WIDTH-1:0];
m_axi_awlen_next = (tr_count_next - 1) >> AXI_BURST_SIZE;
end
end
m_axi_awaddr_next = axi_addr_reg;
// keep offset, no bubble cycles, not first cycle
bubble_cycle_next = 1'b0;
first_cycle_next = 1'b0;
input_cycle_count_next = (tr_count_next - offset_reg - 1) >> (AXI_BURST_SIZE);
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
last_cycle_next = output_cycle_count_next == 0;
input_active_next = tr_count_next > offset_reg;
axi_addr_next = axi_addr_reg + tr_count_next;
op_count_next = op_count_reg - tr_count_next;
// enqueue status FIFO entry for write completion
status_fifo_we = 1'b1;
status_fifo_wr_tag = tag_table_tag[pcie_tag_reg];
status_fifo_wr_last = 1'b0;
status_fifo_wr_completion = 1'b1;
m_axi_awvalid_next = 1'b1;
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
if (final_cpl_reg) begin
// last completion in current read request (PCIe tag)
finish_tag = 1'b1; // release tag
end else begin
// more completions to come, store current address
tag_table_we_tlp = 1'b1;
end
// enqueue status FIFO entry for write completion
status_fifo_we = 1'b1;
status_fifo_wr_tag = tag_table_tag[pcie_tag_reg];
status_fifo_wr_last = final_cpl_reg && tag_table_last[pcie_tag_reg];
status_fifo_wr_completion = 1'b1;
if (AXIS_PCIE_DATA_WIDTH > 64) begin
s_axis_rc_tready_next = 1'b0;
end else begin
s_axis_rc_tready_next = 1'b1;
end
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end
TLP_STATE_WAIT_END: begin
// wait end state, wait for end of TLP
s_axis_rc_tready_next = 1'b1;
if (s_axis_rc_tready & s_axis_rc_tvalid) begin
if (s_axis_rc_tlast) begin
if (AXIS_PCIE_DATA_WIDTH > 64) begin
s_axis_rc_tready_next = 1'b0;
end else begin
s_axis_rc_tready_next = 1'b1;
end
tlp_state_next = TLP_STATE_IDLE;
end else begin
tlp_state_next = TLP_STATE_WAIT_END;
end
end else begin
tlp_state_next = TLP_STATE_WAIT_END;
end
end
endcase
if (status_fifo_rd_ptr_reg != status_fifo_wr_ptr_reg) begin
// status FIFO not empty
if (status_fifo_completion[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]]) begin
// completion entry
if (m_axi_bready && m_axi_bvalid) begin
// got write completion, pop and return status
m_axis_read_desc_status_tag_next = status_fifo_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
m_axis_read_desc_status_valid_next = status_fifo_last[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
m_axi_bready_next = 1'b0;
end else begin
// wait for write completion
m_axi_bready_next = 1'b1;
end
end else begin
// non-completion entry, pop and return status
m_axis_read_desc_status_tag_next = status_fifo_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
m_axis_read_desc_status_valid_next = status_fifo_last[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
end
end
end
always @* begin
tag_table_we_req = 1'b0;
tlp_cmd_ready = 1'b0;
// tag table write management
if (tag_table_we_tlp) begin
end else if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
tag_table_we_req = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
req_state_reg <= REQ_STATE_IDLE;
tlp_state_reg <= TLP_STATE_IDLE;
tlp_cmd_valid_reg <= 1'b0;
s_axis_rc_tready_reg <= 1'b0;
s_axis_read_desc_ready_reg <= 1'b0;
m_axis_read_desc_status_valid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
status_error_cor_reg <= 1'b0;
status_error_uncor_reg <= 1'b0;
status_fifo_wr_ptr_reg <= 0;
status_fifo_rd_ptr_reg <= 0;
end else begin
req_state_reg <= req_state_next;
tlp_state_reg <= tlp_state_next;
tlp_cmd_valid_reg <= tlp_cmd_valid_next;
s_axis_rc_tready_reg <= s_axis_rc_tready_next;
s_axis_read_desc_ready_reg <= s_axis_read_desc_ready_next;
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
status_error_cor_reg <= status_error_cor_next;
status_error_uncor_reg <= status_error_uncor_next;
if (status_fifo_we) begin
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
end
status_fifo_rd_ptr_reg <= status_fifo_rd_ptr_next;
end
req_pcie_addr_reg <= req_pcie_addr_next;
req_axi_addr_reg <= req_axi_addr_next;
req_op_count_reg <= req_op_count_next;
req_tlp_count_reg <= req_tlp_count_next;
lower_addr_reg <= lower_addr_next;
byte_count_reg <= byte_count_next;
error_code_reg <= error_code_next;
axi_addr_reg <= axi_addr_next;
op_count_reg <= op_count_next;
tr_count_reg <= tr_count_next;
op_dword_count_reg <= op_dword_count_next;
input_cycle_count_reg <= input_cycle_count_next;
output_cycle_count_reg <= output_cycle_count_next;
input_active_reg <= input_active_next;
bubble_cycle_reg <= bubble_cycle_next;
first_cycle_reg <= first_cycle_next;
last_cycle_reg <= last_cycle_next;
pcie_tag_reg <= pcie_tag_next;
final_cpl_reg <= final_cpl_next;
offset_reg <= offset_next;
first_cycle_offset_reg <= first_cycle_offset_next;
last_cycle_offset_reg <= last_cycle_offset_next;
tlp_cmd_addr_reg <= tlp_cmd_addr_next;
tlp_cmd_tag_reg <= tlp_cmd_tag_next;
tlp_cmd_pcie_tag_reg <= tlp_cmd_pcie_tag_next;
tlp_cmd_last_reg <= tlp_cmd_last_next;
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
max_read_request_size_dw_reg <= 11'd32 << (max_read_request_size > 5 ? 5 : max_read_request_size);
if (transfer_in_save) begin
save_axis_tdata_reg <= s_axis_rc_tdata;
end
if (tag_table_we_tlp) begin
tag_table_axi_addr[pcie_tag_reg] <= axi_addr_next;
end else if (tlp_cmd_valid_reg && tag_table_we_req) begin
tag_table_axi_addr[tlp_cmd_pcie_tag_reg] <= tlp_cmd_addr_reg;
tag_table_tag[tlp_cmd_pcie_tag_reg] <= tlp_cmd_tag_reg;
tag_table_last[tlp_cmd_pcie_tag_reg] <= tlp_cmd_last_reg;
end
if (status_fifo_we) begin
status_fifo_tag[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_tag;
status_fifo_last[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_last;
status_fifo_completion[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_completion;
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
end
end
// output datapath logic (PCIe TLP)
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next;
reg m_axis_rq_tlast_reg = 1'b0;
reg [59:0] m_axis_rq_tuser_reg = 60'd0;
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next;
reg temp_m_axis_rq_tlast_reg = 1'b0;
reg [59:0] temp_m_axis_rq_tuser_reg = 60'd0;
// datapath control
reg store_axis_rq_int_to_output;
reg store_axis_rq_int_to_temp;
reg store_axis_rq_temp_to_output;
assign m_axis_rq_tdata = m_axis_rq_tdata_reg;
assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg;
assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg;
assign m_axis_rq_tlast = m_axis_rq_tlast_reg;
assign m_axis_rq_tuser = m_axis_rq_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
store_axis_rq_int_to_output = 1'b0;
store_axis_rq_int_to_temp = 1'b0;
store_axis_rq_temp_to_output = 1'b0;
if (m_axis_rq_tready_int_reg) begin
// input is ready
if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_temp = 1'b1;
end
end else if (m_axis_rq_tready) begin
// input is not ready, but output is ready
m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = 1'b0;
store_axis_rq_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_rq_tvalid_reg <= 1'b0;
m_axis_rq_tready_int_reg <= 1'b0;
temp_m_axis_rq_tvalid_reg <= 1'b0;
end else begin
m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next;
m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early;
temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next;
end
// datapath
if (store_axis_rq_int_to_output) begin
m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end else if (store_axis_rq_temp_to_output) begin
m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg;
m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg;
m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg;
m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg;
end
if (store_axis_rq_int_to_temp) begin
temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end
end
// output datapath logic (AXI write data)
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
reg m_axi_wlast_reg = 1'b0;
reg [AXI_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
reg temp_m_axi_wlast_reg = 1'b0;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign m_axi_wdata = m_axi_wdata_reg;
assign m_axi_wstrb = m_axi_wstrb_reg;
assign m_axi_wvalid = m_axi_wvalid_reg;
assign m_axi_wlast = m_axi_wlast_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !m_axi_wvalid_int));
always @* begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wready || !m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
end
end
endmodule