1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/utils/mqnic-dump.c
Alex Forencich 6cfd808823 utils: Dump statistics counters in mqnic-dump
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-11-23 17:38:28 -08:00

489 lines
22 KiB
C

/*
Copyright 2019, The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of The Regents of the University of California.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <mqnic/mqnic.h>
static void usage(char *name)
{
fprintf(stderr,
"usage: %s [options]\n"
" -d name device to open (/dev/mqnic0)\n"
" -i number interface\n"
" -P number port\n",
name);
}
int main(int argc, char *argv[])
{
char *name;
int opt;
int ret = 0;
char *device = NULL;
struct mqnic *dev;
int interface = 0;
int port = 0;
int sched_block = 0;
name = strrchr(argv[0], '/');
name = name ? 1+name : argv[0];
while ((opt = getopt(argc, argv, "d:i:P:h?")) != EOF)
{
switch (opt)
{
case 'd':
device = optarg;
break;
case 'i':
interface = atoi(optarg);
break;
case 'P':
port = atoi(optarg);
break;
case 'h':
case '?':
usage(name);
return 0;
default:
usage(name);
return -1;
}
}
if (!device)
{
fprintf(stderr, "Device not specified\n");
usage(name);
return -1;
}
dev = mqnic_open(device);
if (!dev)
{
fprintf(stderr, "Failed to open device\n");
return -1;
}
if (dev->pci_device_path[0])
{
char *ptr = strrchr(dev->pci_device_path, '/');
if (ptr)
printf("PCIe ID: %s\n", ptr+1);
}
printf("Control region size: %lu\n", dev->regs_size);
if (dev->app_regs_size)
printf("Application region size: %lu\n", dev->app_regs_size);
if (dev->ram_size)
printf("RAM region size: %lu\n", dev->ram_size);
printf("Device-level register blocks:\n");
for (struct mqnic_reg_block *rb = dev->rb_list; rb->regs; rb++)
printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24,
(rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff);
mqnic_print_fw_id(dev);
printf("IF offset: 0x%08x\n", dev->if_offset);
printf("IF count: %d\n", dev->if_count);
printf("IF stride: 0x%08x\n", dev->if_stride);
printf("IF CSR offset: 0x%08x\n", dev->if_csr_offset);
if (dev->phc_rb)
{
int ch;
uint32_t ns;
uint32_t fns;
printf("PHC time: %ld.%09d s\n", mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_SEC_L) +
(((int64_t)mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_SEC_H)) << 32),
mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_CUR_NS));
ns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_PERIOD_NS);
fns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_PERIOD_FNS);
printf("PHC period: %d.%09ld ns (raw 0x%x ns 0x%08x fns)\n", ns, ((uint64_t)fns * 1000000000) >> 32, ns, fns);
ns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_NOM_PERIOD_NS);
fns = mqnic_reg_read32(dev->phc_rb->regs, MQNIC_RB_PHC_REG_NOM_PERIOD_FNS);
printf("PHC nom period: %d.%09ld ns (raw 0x%x ns 0x%08x fns)\n", ns, ((uint64_t)fns * 1000000000) >> 32, ns, fns);
ch = 0;
for (struct mqnic_reg_block *rb = dev->rb_list; rb->regs; rb++)
{
if (rb->type == MQNIC_RB_PHC_PEROUT_TYPE && rb->version == MQNIC_RB_PHC_PEROUT_VER)
{
printf("PHC perout ch %d ctrl: 0x%08x\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_CTRL));
printf("PHC perout ch %d start: %ld.%09d s\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_START_SEC_L) +
(((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_START_SEC_H)) << 32),
mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_START_NS));
printf("PHC perout ch %d period: %ld.%09d s\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_PERIOD_SEC_L) +
(((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_PERIOD_SEC_H)) << 32),
mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_PERIOD_NS));
printf("PHC perout ch %d width: %ld.%09d s\n", ch, mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_WIDTH_SEC_L) +
(((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_WIDTH_SEC_H)) << 32),
mqnic_reg_read32(rb->regs, MQNIC_RB_PHC_PEROUT_REG_WIDTH_NS));
ch++;
}
}
}
if (dev->clk_info_rb)
{
uint32_t num;
uint32_t denom;
uint32_t ns;
uint32_t fns;
uint32_t mhz;
uint32_t hz;
num = dev->ref_clk_nom_per_ns_num;
denom = dev->ref_clk_nom_per_ns_denom;
ns = num/denom;
fns = ((num-ns*denom)*1000000000ull)/denom;
printf("Ref clock nominal period: %d.%09d ns (raw %d/%d ns)\n", ns, fns, num, denom);
hz = mqnic_get_ref_clk_nom_freq_hz(dev);
mhz = hz / 1000000;
hz = hz - (mhz * 1000000);
printf("Ref clock nominal freq: %d.%06d MHz\n", mhz, hz);
num = dev->core_clk_nom_per_ns_num;
denom = dev->core_clk_nom_per_ns_denom;
ns = num/denom;
fns = ((num-ns*denom)*1000000000ull)/denom;
printf("Core clock nominal period: %d.%09d ns (raw %d/%d ns)\n", ns, fns, num, denom);
hz = mqnic_get_core_clk_nom_freq_hz(dev);
mhz = hz / 1000000;
hz = hz - (mhz * 1000000);
printf("Core clock nominal freq: %d.%06d MHz\n", mhz, hz);
hz = mqnic_get_core_clk_freq_hz(dev);
mhz = hz / 1000000;
hz = hz - (mhz * 1000000);
printf("Core clock freq: %d.%06d MHz\n", mhz, hz);
for (int ch = 0; ch < dev->clk_info_channels; ch++)
{
hz = mqnic_get_clk_freq_hz(dev, ch);
mhz = hz / 1000000;
hz = hz - (mhz * 1000000);
printf("CH%d: clock freq: %d.%06d MHz\n", ch, mhz, hz);
}
}
if (interface < 0 || interface >= dev->if_count)
{
fprintf(stderr, "Interface out of range\n");
ret = -1;
goto err;
}
struct mqnic_if *dev_interface = dev->interfaces[interface];
if (!dev_interface)
{
fprintf(stderr, "Invalid interface\n");
ret = -1;
goto err;
}
printf("Interface-level register blocks:\n");
for (struct mqnic_reg_block *rb = dev_interface->rb_list; rb->regs; rb++)
printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24,
(rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff);
printf("IF features: 0x%08x\n", dev_interface->if_features);
printf("Port count: %d\n", dev_interface->port_count);
printf("Scheduler block count: %d\n", dev_interface->sched_block_count);
printf("Max TX MTU: %d\n", dev_interface->max_tx_mtu);
printf("Max RX MTU: %d\n", dev_interface->max_rx_mtu);
printf("TX MTU: %d\n", mqnic_interface_get_tx_mtu(dev_interface));
printf("RX MTU: %d\n", mqnic_interface_get_rx_mtu(dev_interface));
printf("Event queue offset: 0x%08x\n", dev_interface->event_queue_offset);
printf("Event queue count: %d\n", dev_interface->event_queue_count);
printf("Event queue stride: 0x%08x\n", dev_interface->event_queue_stride);
printf("TX queue offset: 0x%08x\n", dev_interface->tx_queue_offset);
printf("TX queue count: %d\n", dev_interface->tx_queue_count);
printf("TX queue stride: 0x%08x\n", dev_interface->tx_queue_stride);
printf("TX completion queue offset: 0x%08x\n", dev_interface->tx_cpl_queue_offset);
printf("TX completion queue count: %d\n", dev_interface->tx_cpl_queue_count);
printf("TX completion queue stride: 0x%08x\n", dev_interface->tx_cpl_queue_stride);
printf("RX queue offset: 0x%08x\n", dev_interface->rx_queue_offset);
printf("RX queue count: %d\n", dev_interface->rx_queue_count);
printf("RX queue stride: 0x%08x\n", dev_interface->rx_queue_stride);
printf("RX completion queue offset: 0x%08x\n", dev_interface->rx_cpl_queue_offset);
printf("RX completion queue count: %d\n", dev_interface->rx_cpl_queue_count);
printf("RX completion queue stride: 0x%08x\n", dev_interface->rx_cpl_queue_stride);
for (int k = 0; k < dev_interface->port_count; k++)
{
printf("Port %d RX queue map offset: %d\n", k, mqnic_interface_get_rx_queue_map_offset(dev_interface, k));
printf("Port %d RX queue map RSS mask: 0x%08x\n", k, mqnic_interface_get_rx_queue_map_rss_mask(dev_interface, k));
printf("Port %d RX queue map app mask: 0x%08x\n", k, mqnic_interface_get_rx_queue_map_app_mask(dev_interface, k));
}
if (port < 0 || port >= dev_interface->port_count)
{
fprintf(stderr, "Port out of range\n");
ret = -1;
goto err;
}
struct mqnic_port *dev_port = dev_interface->ports[port];
if (!dev_port)
{
fprintf(stderr, "Invalid port\n");
ret = -1;
goto err;
}
printf("Port-level register blocks:\n");
for (struct mqnic_reg_block *rb = dev_port->rb_list; rb->regs; rb++)
printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24,
(rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff);
printf("Port features: 0x%08x\n", dev_port->port_features);
printf("Port TX status: 0x%08x\n", mqnic_port_get_tx_status(dev_port));
printf("Port RX status: 0x%08x\n", mqnic_port_get_rx_status(dev_port));
sched_block = port;
if (sched_block < 0 || sched_block >= dev_interface->sched_block_count)
{
fprintf(stderr, "Scheduler block out of range\n");
ret = -1;
goto err;
}
struct mqnic_sched_block *dev_sched_block = dev_interface->sched_blocks[sched_block];
if (!dev_sched_block)
{
fprintf(stderr, "Invalid scheduler block\n");
ret = -1;
goto err;
}
printf("Scheduler block-level register blocks:\n");
for (struct mqnic_reg_block *rb = dev_sched_block->rb_list; rb->regs; rb++)
printf(" type 0x%08x (v %d.%d.%d.%d)\n", rb->type, rb->version >> 24,
(rb->version >> 16) & 0xff, (rb->version >> 8) & 0xff, rb->version & 0xff);
printf("Sched count: %d\n", dev_sched_block->sched_count);
for (struct mqnic_reg_block *rb = dev_sched_block->rb_list; rb->regs; rb++)
{
if (rb->type == MQNIC_RB_SCHED_RR_TYPE && rb->version == MQNIC_RB_SCHED_RR_VER)
{
printf("Round-robin scheduler\n");
printf("Sched channel count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_CH_COUNT));
printf("Sched channel stride: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_CH_STRIDE));
printf("Sched control: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_CTRL));
printf("Sched dest: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_RR_REG_DEST));
}
else if (rb->type == MQNIC_RB_SCHED_CTRL_TDMA_TYPE && rb->version == MQNIC_RB_SCHED_CTRL_TDMA_VER)
{
printf("TDMA scheduler controller\n");
printf("Sched channel count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_CH_COUNT));
printf("Sched channel stride: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_CH_STRIDE));
printf("Sched control: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_CTRL));
printf("Sched timeslot count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_SCHED_CTRL_TDMA_REG_TS_COUNT));
}
else if (rb->type == MQNIC_RB_TDMA_SCH_TYPE && rb->version == MQNIC_RB_TDMA_SCH_VER)
{
printf("TDMA scheduler\n");
printf("TDMA timeslot count: %d\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_COUNT));
printf("TDMA control: 0x%08x\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_CTRL));
printf("TDMA status: 0x%08x\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_STATUS));
printf("TDMA schedule start: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_START_SEC_L) +
(((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_START_SEC_H)) << 32),
mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_START_NS));
printf("TDMA schedule period: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_PERIOD_SEC_L) +
(((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_PERIOD_SEC_H)) << 32),
mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_SCH_PERIOD_NS));
printf("TDMA timeslot period: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_PERIOD_SEC_L) +
(((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_PERIOD_SEC_H)) << 32),
mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_TS_PERIOD_NS));
printf("TDMA active period: %ld.%09d s\n", mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_ACTIVE_PERIOD_SEC_L) +
(((int64_t)mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_ACTIVE_PERIOD_SEC_H)) << 32),
mqnic_reg_read32(rb->regs, MQNIC_RB_TDMA_SCH_REG_ACTIVE_PERIOD_NS));
}
}
printf("TX queue info\n");
printf(" Queue Base Address E B LS CPL Head Tail Len\n");
for (int k = 0; k < dev_interface->tx_queue_count; k++)
{
volatile uint8_t *base = dev_interface->regs+dev_interface->tx_queue_offset+k*dev_interface->tx_queue_stride;
uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_REG+4) << 32);
uint8_t active = (mqnic_reg_read32(base, MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG) & MQNIC_QUEUE_ACTIVE_MASK) != 0;
uint8_t log_desc_block_size = (mqnic_reg_read32(base, MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG) >> 8) & 0xff;
uint8_t log_queue_size = mqnic_reg_read32(base, MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG) & 0xff;
uint32_t cpl_queue_index = mqnic_reg_read32(base, MQNIC_QUEUE_CPL_QUEUE_INDEX_REG);
uint32_t head_ptr = mqnic_reg_read32(base, MQNIC_QUEUE_HEAD_PTR_REG);
uint32_t tail_ptr = mqnic_reg_read32(base, MQNIC_QUEUE_TAIL_PTR_REG);
uint32_t occupancy = (head_ptr - tail_ptr) & 0xffff;
printf("TXQ %4d 0x%016lx %d %d %2d %4d %6d %6d %6d\n", k, base_addr, active, log_desc_block_size, log_queue_size, cpl_queue_index, head_ptr, tail_ptr, occupancy);
}
printf("TX completion queue info\n");
printf(" Queue Base Address E LS A C Int Head Tail Len\n");
for (int k = 0; k < dev_interface->tx_queue_count; k++)
{
volatile uint8_t *base = dev_interface->regs+dev_interface->tx_cpl_queue_offset+k*dev_interface->tx_cpl_queue_stride;
uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_CPL_QUEUE_BASE_ADDR_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_CPL_QUEUE_BASE_ADDR_REG+4) << 32);
uint8_t active = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_ACTIVE_LOG_SIZE_REG) & MQNIC_CPL_QUEUE_ACTIVE_MASK) != 0;
uint8_t log_queue_size = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_ACTIVE_LOG_SIZE_REG) & 0xff;
uint8_t armed = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & MQNIC_CPL_QUEUE_ARM_MASK) != 0;
uint8_t continuous = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & MQNIC_CPL_QUEUE_CONT_MASK) != 0;
uint32_t interrupt_index = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & 0xffff;
uint32_t head_ptr = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_HEAD_PTR_REG);
uint32_t tail_ptr = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_TAIL_PTR_REG);
uint32_t occupancy = (head_ptr - tail_ptr) & 0xffff;
printf("TXCQ %4d 0x%016lx %d %2d %d %d %4d %6d %6d %6d\n", k, base_addr, active, log_queue_size, armed, continuous, interrupt_index, head_ptr, tail_ptr, occupancy);
}
printf("RX queue info\n");
printf(" Queue Base Address E B LS CPL Head Tail Len\n");
for (int k = 0; k < dev_interface->rx_queue_count; k++)
{
volatile uint8_t *base = dev_interface->regs+dev_interface->rx_queue_offset+k*dev_interface->rx_queue_stride;
uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_QUEUE_BASE_ADDR_REG+4) << 32);
uint8_t active = (mqnic_reg_read32(base, MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG) & MQNIC_QUEUE_ACTIVE_MASK) != 0;
uint8_t log_desc_block_size = (mqnic_reg_read32(base, MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG) >> 8) & 0xff;
uint8_t log_queue_size = mqnic_reg_read32(base, MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG) & 0xff;
uint32_t cpl_queue_index = mqnic_reg_read32(base, MQNIC_QUEUE_CPL_QUEUE_INDEX_REG);
uint32_t head_ptr = mqnic_reg_read32(base, MQNIC_QUEUE_HEAD_PTR_REG);
uint32_t tail_ptr = mqnic_reg_read32(base, MQNIC_QUEUE_TAIL_PTR_REG);
uint32_t occupancy = (head_ptr - tail_ptr) & 0xffff;
printf("RXQ %4d 0x%016lx %d %d %2d %4d %6d %6d %6d\n", k, base_addr, active, log_desc_block_size, log_queue_size, cpl_queue_index, head_ptr, tail_ptr, occupancy);
}
printf("RX completion queue info\n");
printf(" Queue Base Address E LS A C Int Head Tail Len\n");
for (int k = 0; k < dev_interface->rx_queue_count; k++)
{
volatile uint8_t *base = dev_interface->regs+dev_interface->rx_cpl_queue_offset+k*dev_interface->rx_cpl_queue_stride;
uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_CPL_QUEUE_BASE_ADDR_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_CPL_QUEUE_BASE_ADDR_REG+4) << 32);
uint8_t active = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_ACTIVE_LOG_SIZE_REG) & MQNIC_CPL_QUEUE_ACTIVE_MASK) != 0;
uint8_t log_queue_size = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_ACTIVE_LOG_SIZE_REG) & 0xff;
uint8_t armed = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & MQNIC_CPL_QUEUE_ARM_MASK) != 0;
uint8_t continuous = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & MQNIC_CPL_QUEUE_CONT_MASK) != 0;
uint32_t interrupt_index = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & 0xffff;
uint32_t head_ptr = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_HEAD_PTR_REG);
uint32_t tail_ptr = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_TAIL_PTR_REG);
uint32_t occupancy = (head_ptr - tail_ptr) & 0xffff;
printf("RXCQ %4d 0x%016lx %d %2d %d %d %4d %6d %6d %6d\n", k, base_addr, active, log_queue_size, armed, continuous, interrupt_index, head_ptr, tail_ptr, occupancy);
}
printf("Event queue info\n");
printf(" Queue Base Address E LS A C Int Head Tail Len\n");
for (int k = 0; k < dev_interface->event_queue_count; k++)
{
volatile uint8_t *base = dev_interface->regs+dev_interface->event_queue_offset+k*dev_interface->event_queue_stride;
uint64_t base_addr = (uint64_t)mqnic_reg_read32(base, MQNIC_CPL_QUEUE_BASE_ADDR_REG) + ((uint64_t)mqnic_reg_read32(base, MQNIC_CPL_QUEUE_BASE_ADDR_REG+4) << 32);
uint8_t active = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_ACTIVE_LOG_SIZE_REG) & MQNIC_CPL_QUEUE_ACTIVE_MASK) != 0;
uint8_t log_queue_size = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_ACTIVE_LOG_SIZE_REG) & 0xff;
uint8_t armed = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & MQNIC_CPL_QUEUE_ARM_MASK) != 0;
uint8_t continuous = (mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & MQNIC_CPL_QUEUE_CONT_MASK) != 0;
uint32_t interrupt_index = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_INTERRUPT_INDEX_REG) & 0xffff;
uint32_t head_ptr = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_HEAD_PTR_REG);
uint32_t tail_ptr = mqnic_reg_read32(base, MQNIC_CPL_QUEUE_TAIL_PTR_REG);
uint32_t occupancy = (head_ptr - tail_ptr) & 0xffff;
printf("EQ %4d 0x%016lx %d %2d %d %d %4d %6d %6d %6d\n", k, base_addr, active, log_queue_size, armed, continuous, interrupt_index, head_ptr, tail_ptr, occupancy);
}
for (int k = 0; k < dev_sched_block->sched_count; k++)
{
printf("Scheduler block %d scheduler %d\n", sched_block, k);
for (int l = 0; l < dev_interface->tx_queue_count; l++)
{
printf("Sched %2d queue %4d state: 0x%08x\n", k, l, mqnic_reg_read32(dev_sched_block->sched[k]->regs, l*4));
}
}
if (dev->stats_rb)
{
printf("Statistics counters\n");
for (int k = 0; k < dev->stats_count; k++)
{
printf("Index %d: %lu\n", k, mqnic_stats_read(dev, k));
}
}
err:
mqnic_close(dev);
return ret;
}