1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_fifo.v
Alex Forencich 6020d09214 Reorganize FIFO write logic
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2023-08-14 18:55:02 -07:00

506 lines
19 KiB
Verilog

/*
Copyright (c) 2013-2023 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream FIFO
*/
module axis_fifo #
(
// FIFO depth in words
// KEEP_WIDTH words per cycle if KEEP_ENABLE set
// Rounded up to nearest power of 2 cycles
parameter DEPTH = 4096,
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = ((DATA_WIDTH+7)/8),
// Propagate tlast signal
parameter LAST_ENABLE = 1,
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// number of RAM pipeline registers
parameter RAM_PIPELINE = 1,
// use output FIFO
// When set, the RAM read enable and pipeline clock enables are removed
parameter OUTPUT_FIFO_ENABLE = 0,
// Frame FIFO mode - operate on frames instead of cycles
// When set, m_axis_tvalid will not be deasserted within a frame
// Requires LAST_ENABLE set
parameter FRAME_FIFO = 0,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1,
// Drop frames larger than FIFO
// Requires FRAME_FIFO set
parameter DROP_OVERSIZE_FRAME = FRAME_FIFO,
// Drop frames marked bad
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter DROP_BAD_FRAME = 0,
// Drop incoming frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO and DROP_OVERSIZE_FRAME set
parameter DROP_WHEN_FULL = 0,
// Enable pause request input
parameter PAUSE_ENABLE = 0,
// Pause between frames
parameter FRAME_PAUSE = FRAME_FIFO
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* Pause
*/
input wire pause_req,
output wire pause_ack,
/*
* Status
*/
output wire [$clog2(DEPTH):0] status_depth,
output wire [$clog2(DEPTH):0] status_depth_commit,
output wire status_overflow,
output wire status_bad_frame,
output wire status_good_frame
);
parameter ADDR_WIDTH = (KEEP_ENABLE && KEEP_WIDTH > 1) ? $clog2(DEPTH/KEEP_WIDTH) : $clog2(DEPTH);
parameter OUTPUT_FIFO_ADDR_WIDTH = RAM_PIPELINE < 2 ? 3 : $clog2(RAM_PIPELINE*2+7);
// check configuration
initial begin
if (FRAME_FIFO && !LAST_ENABLE) begin
$error("Error: FRAME_FIFO set requires LAST_ENABLE set (instance %m)");
$finish;
end
if (DROP_OVERSIZE_FRAME && !FRAME_FIFO) begin
$error("Error: DROP_OVERSIZE_FRAME set requires FRAME_FIFO set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin
$error("Error: DROP_BAD_FRAME set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
$finish;
end
if (DROP_WHEN_FULL && !(FRAME_FIFO && DROP_OVERSIZE_FRAME)) begin
$error("Error: DROP_WHEN_FULL set requires FRAME_FIFO and DROP_OVERSIZE_FRAME set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin
$error("Error: Invalid USER_BAD_FRAME_MASK value (instance %m)");
$finish;
end
end
localparam KEEP_OFFSET = DATA_WIDTH;
localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0);
localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0);
localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0);
localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0);
localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0);
reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_commit_reg = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}};
(* ramstyle = "no_rw_check" *)
reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg mem_read_data_valid_reg = 1'b0;
(* shreg_extract = "no" *)
reg [WIDTH-1:0] m_axis_pipe_reg[RAM_PIPELINE+1-1:0];
reg [RAM_PIPELINE+1-1:0] m_axis_tvalid_pipe_reg = 0;
// full when first MSB different but rest same
wire full = wr_ptr_reg == (rd_ptr_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}});
// empty when pointers match exactly
wire empty = wr_ptr_commit_reg == rd_ptr_reg;
// overflow within packet
wire full_wr = wr_ptr_reg == (wr_ptr_commit_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}});
reg drop_frame_reg = 1'b0;
reg send_frame_reg = 1'b0;
reg [ADDR_WIDTH:0] depth_reg = 0;
reg [ADDR_WIDTH:0] depth_commit_reg = 0;
reg overflow_reg = 1'b0;
reg bad_frame_reg = 1'b0;
reg good_frame_reg = 1'b0;
assign s_axis_tready = FRAME_FIFO ? (!full || (full_wr && DROP_OVERSIZE_FRAME) || DROP_WHEN_FULL) : !full;
wire [WIDTH-1:0] s_axis;
generate
assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata;
if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep;
if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast;
if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid;
if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest;
if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser;
endgenerate
wire [WIDTH-1:0] m_axis = m_axis_pipe_reg[RAM_PIPELINE+1-1];
wire m_axis_tready_pipe;
wire m_axis_tvalid_pipe = m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1];
wire [DATA_WIDTH-1:0] m_axis_tdata_pipe = m_axis[DATA_WIDTH-1:0];
wire [KEEP_WIDTH-1:0] m_axis_tkeep_pipe = KEEP_ENABLE ? m_axis[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}};
wire m_axis_tlast_pipe = LAST_ENABLE ? m_axis[LAST_OFFSET] : 1'b1;
wire [ID_WIDTH-1:0] m_axis_tid_pipe = ID_ENABLE ? m_axis[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}};
wire [DEST_WIDTH-1:0] m_axis_tdest_pipe = DEST_ENABLE ? m_axis[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}};
wire [USER_WIDTH-1:0] m_axis_tuser_pipe = USER_ENABLE ? m_axis[USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}};
wire m_axis_tready_out;
wire m_axis_tvalid_out;
wire [DATA_WIDTH-1:0] m_axis_tdata_out;
wire [KEEP_WIDTH-1:0] m_axis_tkeep_out;
wire m_axis_tlast_out;
wire [ID_WIDTH-1:0] m_axis_tid_out;
wire [DEST_WIDTH-1:0] m_axis_tdest_out;
wire [USER_WIDTH-1:0] m_axis_tuser_out;
wire pipe_ready;
assign status_depth = (KEEP_ENABLE && KEEP_WIDTH > 1) ? {depth_reg, {$clog2(KEEP_WIDTH){1'b0}}} : depth_reg;
assign status_depth_commit = (KEEP_ENABLE && KEEP_WIDTH > 1) ? {depth_commit_reg, {$clog2(KEEP_WIDTH){1'b0}}} : depth_commit_reg;
assign status_overflow = overflow_reg;
assign status_bad_frame = bad_frame_reg;
assign status_good_frame = good_frame_reg;
// Write logic
always @(posedge clk) begin
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
if (FRAME_FIFO) begin
// frame FIFO mode
if (s_axis_tready && s_axis_tvalid) begin
// transfer in
if ((full && DROP_WHEN_FULL) || (full_wr && DROP_OVERSIZE_FRAME) || drop_frame_reg) begin
// full, packet overflow, or currently dropping frame
// drop frame
drop_frame_reg <= 1'b1;
if (s_axis_tlast) begin
// end of frame, reset write pointer
wr_ptr_reg <= wr_ptr_commit_reg;
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b1;
end
end else begin
// store it
mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis;
wr_ptr_reg <= wr_ptr_reg + 1;
if (s_axis_tlast || (!DROP_OVERSIZE_FRAME && (full_wr || send_frame_reg))) begin
// end of frame or send frame
send_frame_reg <= !s_axis_tlast;
if (s_axis_tlast && DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin
// bad packet, reset write pointer
wr_ptr_reg <= wr_ptr_commit_reg;
bad_frame_reg <= 1'b1;
end else begin
// good packet or packet overflow, update write pointer
wr_ptr_commit_reg <= wr_ptr_reg + 1;
good_frame_reg <= s_axis_tlast;
end
end
end
end else if (s_axis_tvalid && full_wr && !DROP_OVERSIZE_FRAME) begin
// data valid with packet overflow
// update write pointer
send_frame_reg <= 1'b1;
wr_ptr_commit_reg <= wr_ptr_reg;
end
end else begin
// normal FIFO mode
if (s_axis_tready && s_axis_tvalid) begin
// transfer in
mem[wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis;
wr_ptr_reg <= wr_ptr_reg + 1;
wr_ptr_commit_reg <= wr_ptr_reg + 1;
end
end
if (rst) begin
wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_commit_reg <= {ADDR_WIDTH+1{1'b0}};
drop_frame_reg <= 1'b0;
send_frame_reg <= 1'b0;
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
end
end
// Status
always @(posedge clk) begin
depth_reg <= wr_ptr_reg - rd_ptr_reg;
depth_commit_reg <= wr_ptr_commit_reg - rd_ptr_reg;
end
// Read logic
integer j;
always @(posedge clk) begin
if (m_axis_tready_pipe) begin
// output ready; invalidate stage
m_axis_tvalid_pipe_reg[RAM_PIPELINE+1-1] <= 1'b0;
end
for (j = RAM_PIPELINE+1-1; j > 0; j = j - 1) begin
if (m_axis_tready_pipe || ((~m_axis_tvalid_pipe_reg) >> j)) begin
// output ready or bubble in pipeline; transfer down pipeline
m_axis_tvalid_pipe_reg[j] <= m_axis_tvalid_pipe_reg[j-1];
m_axis_pipe_reg[j] <= m_axis_pipe_reg[j-1];
m_axis_tvalid_pipe_reg[j-1] <= 1'b0;
end
end
if (m_axis_tready_pipe || ~m_axis_tvalid_pipe_reg) begin
// output ready or bubble in pipeline; read new data from FIFO
m_axis_tvalid_pipe_reg[0] <= 1'b0;
m_axis_pipe_reg[0] <= mem[rd_ptr_reg[ADDR_WIDTH-1:0]];
if (!empty && pipe_ready) begin
// not empty, increment pointer
m_axis_tvalid_pipe_reg[0] <= 1'b1;
rd_ptr_reg <= rd_ptr_reg + 1;
end
end
if (rst) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
m_axis_tvalid_pipe_reg <= 0;
end
end
generate
if (!OUTPUT_FIFO_ENABLE) begin
assign pipe_ready = 1'b1;
assign m_axis_tready_pipe = m_axis_tready_out;
assign m_axis_tvalid_out = m_axis_tvalid_pipe;
assign m_axis_tdata_out = m_axis_tdata_pipe;
assign m_axis_tkeep_out = m_axis_tkeep_pipe;
assign m_axis_tlast_out = m_axis_tlast_pipe;
assign m_axis_tid_out = m_axis_tid_pipe;
assign m_axis_tdest_out = m_axis_tdest_pipe;
assign m_axis_tuser_out = m_axis_tuser_pipe;
end else begin : output_fifo
// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0;
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0;
reg out_fifo_half_full_reg = 1'b0;
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}});
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [DATA_WIDTH-1:0] out_fifo_tdata[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [KEEP_WIDTH-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg out_fifo_tlast[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [ID_WIDTH-1:0] out_fifo_tid[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [DEST_WIDTH-1:0] out_fifo_tdest[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [USER_WIDTH-1:0] out_fifo_tuser[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
assign pipe_ready = !out_fifo_half_full_reg;
assign m_axis_tready_pipe = 1'b1;
assign m_axis_tdata_out = m_axis_tdata_reg;
assign m_axis_tkeep_out = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_axis_tvalid_out = m_axis_tvalid_reg;
assign m_axis_tlast_out = LAST_ENABLE ? m_axis_tlast_reg : 1'b1;
assign m_axis_tid_out = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest_out = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser_out = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready_out;
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1);
if (!out_fifo_full && m_axis_tvalid_pipe) begin
out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdata_pipe;
out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tkeep_pipe;
out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tlast_pipe;
out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tid_pipe;
out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tdest_pipe;
out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_tuser_pipe;
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
end
if (!out_fifo_empty && (!m_axis_tvalid_reg || m_axis_tready_out)) begin
m_axis_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tvalid_reg <= 1'b1;
m_axis_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
end
if (rst) begin
out_fifo_wr_ptr_reg <= 0;
out_fifo_rd_ptr_reg <= 0;
m_axis_tvalid_reg <= 1'b0;
end
end
end
if (PAUSE_ENABLE) begin : pause
// Pause logic
reg pause_reg = 1'b0;
reg pause_frame_reg = 1'b0;
assign m_axis_tready_out = m_axis_tready && !pause_reg;
assign m_axis_tvalid = m_axis_tvalid_out && !pause_reg;
assign m_axis_tdata = m_axis_tdata_out;
assign m_axis_tkeep = m_axis_tkeep_out;
assign m_axis_tlast = m_axis_tlast_out;
assign m_axis_tid = m_axis_tid_out;
assign m_axis_tdest = m_axis_tdest_out;
assign m_axis_tuser = m_axis_tuser_out;
assign pause_ack = pause_reg;
always @(posedge clk) begin
if (FRAME_PAUSE) begin
if (m_axis_tvalid && m_axis_tready) begin
if (m_axis_tlast) begin
pause_frame_reg <= 1'b0;
pause_reg <= pause_req;
end else begin
pause_frame_reg <= 1'b1;
end
end else begin
if (!pause_frame_reg) begin
pause_reg <= pause_req;
end
end
end else begin
pause_reg <= pause_req;
end
if (rst) begin
pause_frame_reg <= 1'b0;
pause_reg <= 1'b0;
end
end
end else begin
assign m_axis_tready_out = m_axis_tready;
assign m_axis_tvalid = m_axis_tvalid_out;
assign m_axis_tdata = m_axis_tdata_out;
assign m_axis_tkeep = m_axis_tkeep_out;
assign m_axis_tlast = m_axis_tlast_out;
assign m_axis_tid = m_axis_tid_out;
assign m_axis_tdest = m_axis_tdest_out;
assign m_axis_tuser = m_axis_tuser_out;
assign pause_ack = 1'b0;
end
endgenerate
endmodule
`resetall