1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/dma_client_axis_source.v
2022-02-15 00:39:46 -08:00

569 lines
24 KiB
Verilog

/*
Copyright (c) 2019-2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI stream source DMA client
*/
module dma_client_axis_source #
(
// RAM address width
parameter RAM_ADDR_WIDTH = 16,
// RAM segment count
parameter SEG_COUNT = 2,
// RAM segment data width
parameter SEG_DATA_WIDTH = 64,
// RAM segment byte enable width
parameter SEG_BE_WIDTH = SEG_DATA_WIDTH/8,
// RAM segment address width
parameter SEG_ADDR_WIDTH = RAM_ADDR_WIDTH-$clog2(SEG_COUNT*SEG_BE_WIDTH),
// Width of AXI stream interfaces in bits
parameter AXIS_DATA_WIDTH = SEG_DATA_WIDTH*SEG_COUNT/2,
// Use AXI stream tkeep signal
parameter AXIS_KEEP_ENABLE = (AXIS_DATA_WIDTH>8),
// AXI stream tkeep signal width (words per cycle)
parameter AXIS_KEEP_WIDTH = (AXIS_DATA_WIDTH/8),
// Use AXI stream tlast signal
parameter AXIS_LAST_ENABLE = 1,
// Propagate AXI stream tid signal
parameter AXIS_ID_ENABLE = 0,
// AXI stream tid signal width
parameter AXIS_ID_WIDTH = 8,
// Propagate AXI stream tdest signal
parameter AXIS_DEST_ENABLE = 0,
// AXI stream tdest signal width
parameter AXIS_DEST_WIDTH = 8,
// Propagate AXI stream tuser signal
parameter AXIS_USER_ENABLE = 1,
// AXI stream tuser signal width
parameter AXIS_USER_WIDTH = 1,
// Width of length field
parameter LEN_WIDTH = 16,
// Width of tag field
parameter TAG_WIDTH = 8
)
(
input wire clk,
input wire rst,
/*
* AXI read descriptor input
*/
input wire [RAM_ADDR_WIDTH-1:0] s_axis_read_desc_ram_addr,
input wire [LEN_WIDTH-1:0] s_axis_read_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_read_desc_tag,
input wire [AXIS_ID_WIDTH-1:0] s_axis_read_desc_id,
input wire [AXIS_DEST_WIDTH-1:0] s_axis_read_desc_dest,
input wire [AXIS_USER_WIDTH-1:0] s_axis_read_desc_user,
input wire s_axis_read_desc_valid,
output wire s_axis_read_desc_ready,
/*
* AXI read descriptor status output
*/
output wire [TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
output wire [3:0] m_axis_read_desc_status_error,
output wire m_axis_read_desc_status_valid,
/*
* AXI stream read data output
*/
output wire [AXIS_DATA_WIDTH-1:0] m_axis_read_data_tdata,
output wire [AXIS_KEEP_WIDTH-1:0] m_axis_read_data_tkeep,
output wire m_axis_read_data_tvalid,
input wire m_axis_read_data_tready,
output wire m_axis_read_data_tlast,
output wire [AXIS_ID_WIDTH-1:0] m_axis_read_data_tid,
output wire [AXIS_DEST_WIDTH-1:0] m_axis_read_data_tdest,
output wire [AXIS_USER_WIDTH-1:0] m_axis_read_data_tuser,
/*
* RAM interface
*/
output wire [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr,
output wire [SEG_COUNT-1:0] ram_rd_cmd_valid,
input wire [SEG_COUNT-1:0] ram_rd_cmd_ready,
input wire [SEG_COUNT*SEG_DATA_WIDTH-1:0] ram_rd_resp_data,
input wire [SEG_COUNT-1:0] ram_rd_resp_valid,
output wire [SEG_COUNT-1:0] ram_rd_resp_ready,
/*
* Configuration
*/
input wire enable
);
parameter RAM_WORD_WIDTH = SEG_BE_WIDTH;
parameter RAM_WORD_SIZE = SEG_DATA_WIDTH/RAM_WORD_WIDTH;
parameter AXIS_KEEP_WIDTH_INT = AXIS_KEEP_ENABLE ? AXIS_KEEP_WIDTH : 1;
parameter AXIS_WORD_WIDTH = AXIS_KEEP_WIDTH_INT;
parameter AXIS_WORD_SIZE = AXIS_DATA_WIDTH/AXIS_WORD_WIDTH;
parameter PART_COUNT = SEG_COUNT*SEG_BE_WIDTH / AXIS_KEEP_WIDTH_INT;
parameter PART_COUNT_WIDTH = PART_COUNT > 1 ? $clog2(PART_COUNT) : 1;
parameter PART_OFFSET_WIDTH = AXIS_KEEP_WIDTH_INT > 1 ? $clog2(AXIS_KEEP_WIDTH_INT) : 1;
parameter PARTS_PER_SEG = (SEG_BE_WIDTH + AXIS_KEEP_WIDTH_INT - 1) / AXIS_KEEP_WIDTH_INT;
parameter SEGS_PER_PART = (AXIS_KEEP_WIDTH_INT + SEG_BE_WIDTH - 1) / SEG_BE_WIDTH;
parameter OFFSET_WIDTH = AXIS_KEEP_WIDTH_INT > 1 ? $clog2(AXIS_KEEP_WIDTH_INT) : 1;
parameter OFFSET_MASK = AXIS_KEEP_WIDTH_INT > 1 ? {OFFSET_WIDTH{1'b1}} : 0;
parameter ADDR_MASK = {RAM_ADDR_WIDTH{1'b1}} << $clog2(AXIS_KEEP_WIDTH_INT);
parameter CYCLE_COUNT_WIDTH = LEN_WIDTH - $clog2(AXIS_KEEP_WIDTH_INT) + 1;
parameter OUTPUT_FIFO_ADDR_WIDTH = 5;
// bus width assertions
initial begin
if (RAM_WORD_SIZE * SEG_BE_WIDTH != SEG_DATA_WIDTH) begin
$error("Error: RAM data width not evenly divisble (instance %m)");
$finish;
end
if (AXIS_WORD_SIZE * AXIS_KEEP_WIDTH_INT != AXIS_DATA_WIDTH) begin
$error("Error: AXI stream data width not evenly divisble (instance %m)");
$finish;
end
if (RAM_WORD_SIZE != AXIS_WORD_SIZE) begin
$error("Error: word size mismatch (instance %m)");
$finish;
end
if (2**$clog2(RAM_WORD_WIDTH) != RAM_WORD_WIDTH) begin
$error("Error: RAM word width must be even power of two (instance %m)");
$finish;
end
if (RAM_ADDR_WIDTH != SEG_ADDR_WIDTH+$clog2(SEG_COUNT)+$clog2(SEG_BE_WIDTH)) begin
$error("Error: RAM_ADDR_WIDTH does not match RAM configuration (instance %m)");
$finish;
end
if (AXIS_DATA_WIDTH > SEG_COUNT*SEG_DATA_WIDTH) begin
$error("Error: AXI stream interface width must not be wider than RAM interface width (instance %m)");
$finish;
end
if (AXIS_DATA_WIDTH*2**$clog2(PART_COUNT) != SEG_COUNT*SEG_DATA_WIDTH) begin
$error("Error: AXI stream interface width must be a power of two fraction of RAM interface width (instance %m)");
$finish;
end
end
localparam [0:0]
READ_STATE_IDLE = 1'd0,
READ_STATE_READ = 1'd1;
reg [0:0] read_state_reg = READ_STATE_IDLE, read_state_next;
localparam [0:0]
AXIS_STATE_IDLE = 1'd0,
AXIS_STATE_READ = 1'd1;
reg [0:0] axis_state_reg = AXIS_STATE_IDLE, axis_state_next;
// datapath control signals
reg axis_cmd_ready;
integer i;
reg [RAM_ADDR_WIDTH-1:0] read_addr_reg = {RAM_ADDR_WIDTH{1'b0}}, read_addr_next;
reg [SEG_COUNT-1:0] read_ram_mask_reg = 0, read_ram_mask_next;
reg [CYCLE_COUNT_WIDTH-1:0] read_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, read_cycle_count_next;
reg [RAM_ADDR_WIDTH-1:0] axis_cmd_addr_reg = {RAM_ADDR_WIDTH{1'b0}}, axis_cmd_addr_next;
reg [OFFSET_WIDTH-1:0] axis_cmd_last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, axis_cmd_last_cycle_offset_next;
reg [CYCLE_COUNT_WIDTH-1:0] axis_cmd_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, axis_cmd_cycle_count_next;
reg [TAG_WIDTH-1:0] axis_cmd_tag_reg = {TAG_WIDTH{1'b0}}, axis_cmd_tag_next;
reg [AXIS_ID_WIDTH-1:0] axis_cmd_axis_id_reg = {AXIS_ID_WIDTH{1'b0}}, axis_cmd_axis_id_next;
reg [AXIS_DEST_WIDTH-1:0] axis_cmd_axis_dest_reg = {AXIS_DEST_WIDTH{1'b0}}, axis_cmd_axis_dest_next;
reg [AXIS_USER_WIDTH-1:0] axis_cmd_axis_user_reg = {AXIS_USER_WIDTH{1'b0}}, axis_cmd_axis_user_next;
reg axis_cmd_valid_reg = 1'b0, axis_cmd_valid_next;
reg [RAM_ADDR_WIDTH-1:0] addr_reg = {RAM_ADDR_WIDTH{1'b0}}, addr_next;
reg [SEG_COUNT-1:0] ram_mask_reg = 0, ram_mask_next;
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
reg [CYCLE_COUNT_WIDTH-1:0] cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, cycle_count_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg [AXIS_ID_WIDTH-1:0] axis_id_reg = {AXIS_ID_WIDTH{1'b0}}, axis_id_next;
reg [AXIS_DEST_WIDTH-1:0] axis_dest_reg = {AXIS_DEST_WIDTH{1'b0}}, axis_dest_next;
reg [AXIS_USER_WIDTH-1:0] axis_user_reg = {AXIS_USER_WIDTH{1'b0}}, axis_user_next;
reg s_axis_read_desc_ready_reg = 1'b0, s_axis_read_desc_ready_next;
reg [TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
reg m_axis_read_desc_status_valid_reg = 1'b0, m_axis_read_desc_status_valid_next;
reg [SEG_COUNT*SEG_ADDR_WIDTH-1:0] ram_rd_cmd_addr_reg = 0, ram_rd_cmd_addr_next;
reg [SEG_COUNT-1:0] ram_rd_cmd_valid_reg = 0, ram_rd_cmd_valid_next;
reg [SEG_COUNT-1:0] ram_rd_resp_ready_cmb;
// internal datapath
reg [AXIS_DATA_WIDTH-1:0] m_axis_read_data_tdata_int;
reg [AXIS_KEEP_WIDTH-1:0] m_axis_read_data_tkeep_int;
reg m_axis_read_data_tvalid_int;
wire m_axis_read_data_tready_int;
reg m_axis_read_data_tlast_int;
reg [AXIS_ID_WIDTH-1:0] m_axis_read_data_tid_int;
reg [AXIS_DEST_WIDTH-1:0] m_axis_read_data_tdest_int;
reg [AXIS_USER_WIDTH-1:0] m_axis_read_data_tuser_int;
assign s_axis_read_desc_ready = s_axis_read_desc_ready_reg;
assign m_axis_read_desc_status_tag = m_axis_read_desc_status_tag_reg;
assign m_axis_read_desc_status_error = 4'd0;
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
assign ram_rd_cmd_addr = ram_rd_cmd_addr_reg;
assign ram_rd_cmd_valid = ram_rd_cmd_valid_reg;
assign ram_rd_resp_ready = ram_rd_resp_ready_cmb;
always @* begin
read_state_next = READ_STATE_IDLE;
s_axis_read_desc_ready_next = 1'b0;
ram_rd_cmd_addr_next = ram_rd_cmd_addr_reg;
ram_rd_cmd_valid_next = ram_rd_cmd_valid_reg & ~ram_rd_cmd_ready;
read_addr_next = read_addr_reg;
read_ram_mask_next = read_ram_mask_reg;
read_cycle_count_next = read_cycle_count_reg;
axis_cmd_addr_next = axis_cmd_addr_reg;
axis_cmd_last_cycle_offset_next = axis_cmd_last_cycle_offset_reg;
axis_cmd_cycle_count_next = axis_cmd_cycle_count_reg;
axis_cmd_tag_next = axis_cmd_tag_reg;
axis_cmd_axis_id_next = axis_cmd_axis_id_reg;
axis_cmd_axis_dest_next = axis_cmd_axis_dest_reg;
axis_cmd_axis_user_next = axis_cmd_axis_user_reg;
axis_cmd_valid_next = axis_cmd_valid_reg && !axis_cmd_ready;
case (read_state_reg)
READ_STATE_IDLE: begin
// idle state - load new descriptor to start operation
s_axis_read_desc_ready_next = !axis_cmd_valid_reg && enable;
if (s_axis_read_desc_ready && s_axis_read_desc_valid) begin
read_addr_next = s_axis_read_desc_ram_addr & ADDR_MASK;
if (PART_COUNT > 1) begin
read_ram_mask_next = {SEGS_PER_PART{1'b1}} << ((((read_addr_next >> PART_OFFSET_WIDTH) & ({PART_COUNT_WIDTH{1'b1}})) / PARTS_PER_SEG) * SEGS_PER_PART);
end else begin
read_ram_mask_next = {SEG_COUNT{1'b1}};
end
axis_cmd_addr_next = s_axis_read_desc_ram_addr & ADDR_MASK;
axis_cmd_last_cycle_offset_next = s_axis_read_desc_len & OFFSET_MASK;
axis_cmd_tag_next = s_axis_read_desc_tag;
axis_cmd_axis_id_next = s_axis_read_desc_id;
axis_cmd_axis_dest_next = s_axis_read_desc_dest;
axis_cmd_axis_user_next = s_axis_read_desc_user;
axis_cmd_cycle_count_next = (s_axis_read_desc_len - 1) >> $clog2(AXIS_KEEP_WIDTH_INT);
read_cycle_count_next = (s_axis_read_desc_len - 1) >> $clog2(AXIS_KEEP_WIDTH_INT);
axis_cmd_valid_next = 1'b1;
s_axis_read_desc_ready_next = 1'b0;
read_state_next = READ_STATE_READ;
end else begin
read_state_next = READ_STATE_IDLE;
end
end
READ_STATE_READ: begin
// read state - start new read operations
if (!(ram_rd_cmd_valid & ~ram_rd_cmd_ready & read_ram_mask_reg)) begin
// update counters
read_addr_next = read_addr_reg + AXIS_KEEP_WIDTH_INT;
read_cycle_count_next = read_cycle_count_reg - 1;
if (PART_COUNT > 1) begin
read_ram_mask_next = {SEGS_PER_PART{1'b1}} << ((((read_addr_next >> PART_OFFSET_WIDTH) & ({PART_COUNT_WIDTH{1'b1}})) / PARTS_PER_SEG) * SEGS_PER_PART);
end else begin
read_ram_mask_next = {SEG_COUNT{1'b1}};
end
for (i = 0; i < SEG_COUNT; i = i + 1) begin
if (read_ram_mask_reg[i]) begin
ram_rd_cmd_addr_next[i*SEG_ADDR_WIDTH +: SEG_ADDR_WIDTH] = read_addr_reg[RAM_ADDR_WIDTH-1:RAM_ADDR_WIDTH-SEG_ADDR_WIDTH];
ram_rd_cmd_valid_next[i] = 1'b1;
end
end
if (read_cycle_count_reg == 0) begin
s_axis_read_desc_ready_next = !axis_cmd_valid_reg && enable;
read_state_next = READ_STATE_IDLE;
end else begin
read_state_next = READ_STATE_READ;
end
end else begin
read_state_next = READ_STATE_READ;
end
end
endcase
end
always @* begin
axis_state_next = AXIS_STATE_IDLE;
m_axis_read_desc_status_tag_next = m_axis_read_desc_status_tag_reg;
m_axis_read_desc_status_valid_next = 1'b0;
if (PART_COUNT > 1) begin
m_axis_read_data_tdata_int = ram_rd_resp_data >> (((addr_reg >> PART_OFFSET_WIDTH) & {PART_COUNT_WIDTH{1'b1}}) * AXIS_DATA_WIDTH);
end else begin
m_axis_read_data_tdata_int = ram_rd_resp_data;
end
m_axis_read_data_tkeep_int = {AXIS_KEEP_WIDTH{1'b1}};
m_axis_read_data_tlast_int = 1'b0;
m_axis_read_data_tvalid_int = 1'b0;
m_axis_read_data_tid_int = axis_id_reg;
m_axis_read_data_tdest_int = axis_dest_reg;
m_axis_read_data_tuser_int = axis_user_reg;
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
axis_cmd_ready = 1'b0;
addr_next = addr_reg;
ram_mask_next = ram_mask_reg;
last_cycle_offset_next = last_cycle_offset_reg;
cycle_count_next = cycle_count_reg;
last_cycle_next = last_cycle_reg;
axis_id_next = axis_id_reg;
axis_dest_next = axis_dest_reg;
axis_user_next = axis_user_reg;
case (axis_state_reg)
AXIS_STATE_IDLE: begin
// idle state - load new descriptor to start operation
// store transfer parameters
addr_next = axis_cmd_addr_reg;
last_cycle_offset_next = axis_cmd_last_cycle_offset_reg;
cycle_count_next = axis_cmd_cycle_count_reg;
last_cycle_next = axis_cmd_cycle_count_reg == 0;
if (PART_COUNT > 1) begin
ram_mask_next = {SEGS_PER_PART{1'b1}} << ((((addr_next >> PART_OFFSET_WIDTH) & ({PART_COUNT_WIDTH{1'b1}})) / PARTS_PER_SEG) * SEGS_PER_PART);
end else begin
ram_mask_next = {SEG_COUNT{1'b1}};
end
m_axis_read_desc_status_tag_next = axis_cmd_tag_reg;
axis_id_next = axis_cmd_axis_id_reg;
axis_dest_next = axis_cmd_axis_dest_reg;
axis_user_next = axis_cmd_axis_user_reg;
if (axis_cmd_valid_reg) begin
axis_cmd_ready = 1'b1;
axis_state_next = AXIS_STATE_READ;
end
end
AXIS_STATE_READ: begin
// handle read data
ram_rd_resp_ready_cmb = {SEG_COUNT{1'b0}};
if (!(ram_mask_reg & ~ram_rd_resp_valid) && m_axis_read_data_tready_int) begin
// transfer in read data
ram_rd_resp_ready_cmb = ram_mask_reg;
// update counters
addr_next = addr_reg + AXIS_KEEP_WIDTH_INT;
cycle_count_next = cycle_count_reg - 1;
last_cycle_next = cycle_count_next == 0;
if (PART_COUNT > 1) begin
ram_mask_next = {SEGS_PER_PART{1'b1}} << ((((addr_next >> PART_OFFSET_WIDTH) & ({PART_COUNT_WIDTH{1'b1}})) / PARTS_PER_SEG) * SEGS_PER_PART);
end else begin
ram_mask_next = {SEG_COUNT{1'b1}};
end
if (PART_COUNT > 1) begin
m_axis_read_data_tdata_int = ram_rd_resp_data >> (((addr_reg >> PART_OFFSET_WIDTH) & {PART_COUNT_WIDTH{1'b1}}) * AXIS_DATA_WIDTH);
end else begin
m_axis_read_data_tdata_int = ram_rd_resp_data;
end
m_axis_read_data_tkeep_int = {AXIS_KEEP_WIDTH_INT{1'b1}};
m_axis_read_data_tvalid_int = 1'b1;
if (last_cycle_reg) begin
// no more data to transfer, finish operation
if (last_cycle_offset_reg > 0) begin
m_axis_read_data_tkeep_int = {AXIS_KEEP_WIDTH_INT{1'b1}} >> (AXIS_KEEP_WIDTH_INT - last_cycle_offset_reg);
end
m_axis_read_data_tlast_int = 1'b1;
m_axis_read_desc_status_valid_next = 1'b1;
axis_state_next = AXIS_STATE_IDLE;
end else begin
// more cycles in AXI transfer
axis_state_next = AXIS_STATE_READ;
end
end else begin
axis_state_next = AXIS_STATE_READ;
end
end
endcase
end
always @(posedge clk) begin
read_state_reg <= read_state_next;
axis_state_reg <= axis_state_next;
s_axis_read_desc_ready_reg <= s_axis_read_desc_ready_next;
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
ram_rd_cmd_addr_reg <= ram_rd_cmd_addr_next;
ram_rd_cmd_valid_reg <= ram_rd_cmd_valid_next;
read_addr_reg <= read_addr_next;
read_ram_mask_reg <= read_ram_mask_next;
read_cycle_count_reg <= read_cycle_count_next;
axis_cmd_addr_reg <= axis_cmd_addr_next;
axis_cmd_last_cycle_offset_reg <= axis_cmd_last_cycle_offset_next;
axis_cmd_cycle_count_reg <= axis_cmd_cycle_count_next;
axis_cmd_tag_reg <= axis_cmd_tag_next;
axis_cmd_axis_id_reg <= axis_cmd_axis_id_next;
axis_cmd_axis_dest_reg <= axis_cmd_axis_dest_next;
axis_cmd_axis_user_reg <= axis_cmd_axis_user_next;
axis_cmd_valid_reg <= axis_cmd_valid_next;
addr_reg <= addr_next;
ram_mask_reg <= ram_mask_next;
last_cycle_offset_reg <= last_cycle_offset_next;
cycle_count_reg <= cycle_count_next;
last_cycle_reg <= last_cycle_next;
axis_id_reg <= axis_id_next;
axis_dest_reg <= axis_dest_next;
axis_user_reg <= axis_user_next;
if (rst) begin
read_state_reg <= READ_STATE_IDLE;
axis_state_reg <= AXIS_STATE_IDLE;
axis_cmd_valid_reg <= 1'b0;
s_axis_read_desc_ready_reg <= 1'b0;
m_axis_read_desc_status_valid_reg <= 1'b0;
ram_rd_cmd_valid_reg <= {SEG_COUNT{1'b0}};
end
end
// output datapath logic
reg [AXIS_DATA_WIDTH-1:0] m_axis_read_data_tdata_reg = {AXIS_DATA_WIDTH{1'b0}};
reg [AXIS_KEEP_WIDTH-1:0] m_axis_read_data_tkeep_reg = {AXIS_KEEP_WIDTH{1'b0}};
reg m_axis_read_data_tvalid_reg = 1'b0;
reg m_axis_read_data_tlast_reg = 1'b0;
reg [AXIS_ID_WIDTH-1:0] m_axis_read_data_tid_reg = {AXIS_ID_WIDTH{1'b0}};
reg [AXIS_DEST_WIDTH-1:0] m_axis_read_data_tdest_reg = {AXIS_DEST_WIDTH{1'b0}};
reg [AXIS_USER_WIDTH-1:0] m_axis_read_data_tuser_reg = {AXIS_USER_WIDTH{1'b0}};
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_wr_ptr_reg = 0;
reg [OUTPUT_FIFO_ADDR_WIDTH+1-1:0] out_fifo_rd_ptr_reg = 0;
reg out_fifo_half_full_reg = 1'b0;
wire out_fifo_full = out_fifo_wr_ptr_reg == (out_fifo_rd_ptr_reg ^ {1'b1, {OUTPUT_FIFO_ADDR_WIDTH{1'b0}}});
wire out_fifo_empty = out_fifo_wr_ptr_reg == out_fifo_rd_ptr_reg;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [AXIS_DATA_WIDTH-1:0] out_fifo_tdata[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [AXIS_KEEP_WIDTH-1:0] out_fifo_tkeep[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg out_fifo_tlast[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [AXIS_ID_WIDTH-1:0] out_fifo_tid[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [AXIS_DEST_WIDTH-1:0] out_fifo_tdest[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [AXIS_USER_WIDTH-1:0] out_fifo_tuser[2**OUTPUT_FIFO_ADDR_WIDTH-1:0];
assign m_axis_read_data_tready_int = !out_fifo_half_full_reg;
assign m_axis_read_data_tdata = m_axis_read_data_tdata_reg;
assign m_axis_read_data_tkeep = AXIS_KEEP_ENABLE ? m_axis_read_data_tkeep_reg : {AXIS_KEEP_WIDTH{1'b1}};
assign m_axis_read_data_tvalid = m_axis_read_data_tvalid_reg;
assign m_axis_read_data_tlast = AXIS_LAST_ENABLE ? m_axis_read_data_tlast_reg : 1'b1;
assign m_axis_read_data_tid = AXIS_ID_ENABLE ? m_axis_read_data_tid_reg : {AXIS_ID_WIDTH{1'b0}};
assign m_axis_read_data_tdest = AXIS_DEST_ENABLE ? m_axis_read_data_tdest_reg : {AXIS_DEST_WIDTH{1'b0}};
assign m_axis_read_data_tuser = AXIS_USER_ENABLE ? m_axis_read_data_tuser_reg : {AXIS_USER_WIDTH{1'b0}};
always @(posedge clk) begin
m_axis_read_data_tvalid_reg <= m_axis_read_data_tvalid_reg && !m_axis_read_data_tready;
out_fifo_half_full_reg <= $unsigned(out_fifo_wr_ptr_reg - out_fifo_rd_ptr_reg) >= 2**(OUTPUT_FIFO_ADDR_WIDTH-1);
if (!out_fifo_full && m_axis_read_data_tvalid_int) begin
out_fifo_tdata[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_read_data_tdata_int;
out_fifo_tkeep[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_read_data_tkeep_int;
out_fifo_tlast[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_read_data_tlast_int;
out_fifo_tid[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_read_data_tid_int;
out_fifo_tdest[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_read_data_tdest_int;
out_fifo_tuser[out_fifo_wr_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]] <= m_axis_read_data_tuser_int;
out_fifo_wr_ptr_reg <= out_fifo_wr_ptr_reg + 1;
end
if (!out_fifo_empty && (!m_axis_read_data_tvalid_reg || m_axis_read_data_tready)) begin
m_axis_read_data_tdata_reg <= out_fifo_tdata[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_read_data_tkeep_reg <= out_fifo_tkeep[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_read_data_tvalid_reg <= 1'b1;
m_axis_read_data_tlast_reg <= out_fifo_tlast[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_read_data_tid_reg <= out_fifo_tid[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_read_data_tdest_reg <= out_fifo_tdest[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
m_axis_read_data_tuser_reg <= out_fifo_tuser[out_fifo_rd_ptr_reg[OUTPUT_FIFO_ADDR_WIDTH-1:0]];
out_fifo_rd_ptr_reg <= out_fifo_rd_ptr_reg + 1;
end
if (rst) begin
out_fifo_wr_ptr_reg <= 0;
out_fifo_rd_ptr_reg <= 0;
m_axis_read_data_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall