1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/fpga/common/rtl/cpl_op_mux.v
Alex Forencich 448fa8eb4c Use SPDX
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2023-06-26 11:44:57 -07:00

287 lines
11 KiB
Verilog

// SPDX-License-Identifier: BSD-2-Clause-Views
/*
* Copyright (c) 2019-2023 The Regents of the University of California
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Completion operation mux
*/
module cpl_op_mux #
(
// Number of ports
parameter PORTS = 2,
// Select field width
parameter SELECT_WIDTH = 1,
// Queue index width
parameter QUEUE_INDEX_WIDTH = 4,
// Input request tag field width
parameter S_REQ_TAG_WIDTH = 8,
// Output request tag field width (towards descriptor module)
// Additional bits required for response routing
parameter M_REQ_TAG_WIDTH = S_REQ_TAG_WIDTH+$clog2(PORTS),
// Completion size (bytes)
parameter CPL_SIZE = 32,
// select round robin arbitration
parameter ARB_TYPE_ROUND_ROBIN = 0,
// LSB priority selection
parameter ARB_LSB_HIGH_PRIORITY = 1
)
(
input wire clk,
input wire rst,
/*
* Completion request output (to completion module)
*/
output wire [SELECT_WIDTH-1:0] m_axis_req_sel,
output wire [QUEUE_INDEX_WIDTH-1:0] m_axis_req_queue,
output wire [M_REQ_TAG_WIDTH-1:0] m_axis_req_tag,
output wire [CPL_SIZE*8-1:0] m_axis_req_data,
output wire m_axis_req_valid,
input wire m_axis_req_ready,
/*
* Completion request status input (from completion module)
*/
input wire [M_REQ_TAG_WIDTH-1:0] s_axis_req_status_tag,
input wire s_axis_req_status_full,
input wire s_axis_req_status_error,
input wire s_axis_req_status_valid,
/*
* Completion request input
*/
input wire [PORTS*SELECT_WIDTH-1:0] s_axis_req_sel,
input wire [PORTS*QUEUE_INDEX_WIDTH-1:0] s_axis_req_queue,
input wire [PORTS*S_REQ_TAG_WIDTH-1:0] s_axis_req_tag,
input wire [PORTS*CPL_SIZE*8-1:0] s_axis_req_data,
input wire [PORTS-1:0] s_axis_req_valid,
output wire [PORTS-1:0] s_axis_req_ready,
/*
* Completion request status output
*/
output wire [PORTS*S_REQ_TAG_WIDTH-1:0] m_axis_req_status_tag,
output wire [PORTS-1:0] m_axis_req_status_full,
output wire [PORTS-1:0] m_axis_req_status_error,
output wire [PORTS-1:0] m_axis_req_status_valid
);
parameter CL_PORTS = $clog2(PORTS);
// check configuration
initial begin
if (M_REQ_TAG_WIDTH < S_REQ_TAG_WIDTH+$clog2(PORTS)) begin
$error("Error: M_REQ_TAG_WIDTH must be at least $clog2(PORTS) larger than S_REQ_TAG_WIDTH (instance %m)");
$finish;
end
end
// request mux
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// input registers to pipeline arbitration delay
reg [PORTS*SELECT_WIDTH-1:0] s_axis_req_sel_reg = 0;
reg [PORTS*QUEUE_INDEX_WIDTH-1:0] s_axis_req_queue_reg = 0;
reg [PORTS*S_REQ_TAG_WIDTH-1:0] s_axis_req_tag_reg = 0;
reg [PORTS*CPL_SIZE*8-1:0] s_axis_req_data_reg = 0;
reg [PORTS-1:0] s_axis_req_valid_reg = 0;
// internal datapath
reg [SELECT_WIDTH-1:0] m_axis_req_sel_int;
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_req_queue_int;
reg [M_REQ_TAG_WIDTH-1:0] m_axis_req_tag_int;
reg [CPL_SIZE*8-1:0] m_axis_req_data_int;
reg m_axis_req_valid_int;
reg m_axis_req_ready_int_reg = 1'b0;
wire m_axis_req_ready_int_early;
assign s_axis_req_ready = ~s_axis_req_valid_reg | ({PORTS{m_axis_req_ready_int_reg}} & grant);
// mux for incoming packet
wire [SELECT_WIDTH-1:0] current_s_desc_sel = s_axis_req_sel_reg[grant_encoded*SELECT_WIDTH +: SELECT_WIDTH];
wire [QUEUE_INDEX_WIDTH-1:0] current_s_desc_queue = s_axis_req_queue_reg[grant_encoded*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH];
wire [S_REQ_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_req_tag_reg[grant_encoded*S_REQ_TAG_WIDTH +: S_REQ_TAG_WIDTH];
wire [CPL_SIZE*8-1:0] current_s_desc_data = s_axis_req_data_reg[grant_encoded*CPL_SIZE*8 +: CPL_SIZE*8];
wire current_s_desc_valid = s_axis_req_valid_reg[grant_encoded];
wire current_s_desc_ready = s_axis_req_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = (s_axis_req_valid_reg & ~grant) | (s_axis_req_valid & grant);
assign acknowledge = grant & s_axis_req_valid_reg & {PORTS{m_axis_req_ready_int_reg}};
always @* begin
// pass through selected packet data
m_axis_req_sel_int = current_s_desc_sel;
m_axis_req_queue_int = current_s_desc_queue;
m_axis_req_tag_int = {grant_encoded, current_s_desc_tag};
m_axis_req_data_int = current_s_desc_data;
m_axis_req_valid_int = current_s_desc_valid && m_axis_req_ready_int_reg && grant_valid;
end
integer i;
always @(posedge clk) begin
// register inputs
for (i = 0; i < PORTS; i = i + 1) begin
if (s_axis_req_ready[i]) begin
s_axis_req_sel_reg[i*SELECT_WIDTH +: SELECT_WIDTH] <= s_axis_req_sel[i*SELECT_WIDTH +: SELECT_WIDTH];
s_axis_req_queue_reg[i*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH] <= s_axis_req_queue[i*QUEUE_INDEX_WIDTH +: QUEUE_INDEX_WIDTH];
s_axis_req_tag_reg[i*S_REQ_TAG_WIDTH +: S_REQ_TAG_WIDTH] <= s_axis_req_tag[i*S_REQ_TAG_WIDTH +: S_REQ_TAG_WIDTH];
s_axis_req_data_reg[i*CPL_SIZE*8 +: CPL_SIZE*8] <= s_axis_req_data[i*CPL_SIZE*8 +: CPL_SIZE*8];
s_axis_req_valid_reg[i] <= s_axis_req_valid[i];
end
end
if (rst) begin
s_axis_req_valid_reg <= 0;
end
end
// output datapath logic
reg [SELECT_WIDTH-1:0] m_axis_req_sel_reg = {SELECT_WIDTH{1'b0}};
reg [QUEUE_INDEX_WIDTH-1:0] m_axis_req_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}};
reg [M_REQ_TAG_WIDTH-1:0] m_axis_req_tag_reg = {M_REQ_TAG_WIDTH{1'b0}};
reg [CPL_SIZE*8-1:0] m_axis_req_data_reg = {CPL_SIZE*8{1'b0}};
reg m_axis_req_valid_reg = 1'b0, m_axis_req_valid_next;
reg [SELECT_WIDTH-1:0] temp_m_axis_req_sel_reg = {SELECT_WIDTH{1'b0}};
reg [QUEUE_INDEX_WIDTH-1:0] temp_m_axis_req_queue_reg = {QUEUE_INDEX_WIDTH{1'b0}};
reg [M_REQ_TAG_WIDTH-1:0] temp_m_axis_req_tag_reg = {M_REQ_TAG_WIDTH{1'b0}};
reg [CPL_SIZE*8-1:0] temp_m_axis_req_data_reg = {CPL_SIZE*8{1'b0}};
reg temp_m_axis_req_valid_reg = 1'b0, temp_m_axis_req_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_req_sel = m_axis_req_sel_reg;
assign m_axis_req_queue = m_axis_req_queue_reg;
assign m_axis_req_tag = m_axis_req_tag_reg;
assign m_axis_req_data = m_axis_req_data_reg;
assign m_axis_req_valid = m_axis_req_valid_reg;
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_req_ready_int_early = m_axis_req_ready || (!temp_m_axis_req_valid_reg && !m_axis_req_valid_reg);
always @* begin
// transfer sink ready state to source
m_axis_req_valid_next = m_axis_req_valid_reg;
temp_m_axis_req_valid_next = temp_m_axis_req_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_req_ready_int_reg) begin
// input is ready
if (m_axis_req_ready || !m_axis_req_valid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_req_valid_next = m_axis_req_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_req_valid_next = m_axis_req_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_req_ready) begin
// input is not ready, but output is ready
m_axis_req_valid_next = temp_m_axis_req_valid_reg;
temp_m_axis_req_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_req_valid_reg <= m_axis_req_valid_next;
m_axis_req_ready_int_reg <= m_axis_req_ready_int_early;
temp_m_axis_req_valid_reg <= temp_m_axis_req_valid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_req_sel_reg <= m_axis_req_sel_int;
m_axis_req_queue_reg <= m_axis_req_queue_int;
m_axis_req_tag_reg <= m_axis_req_tag_int;
m_axis_req_data_reg <= m_axis_req_data_int;
end else if (store_axis_temp_to_output) begin
m_axis_req_sel_reg <= temp_m_axis_req_sel_reg;
m_axis_req_queue_reg <= temp_m_axis_req_queue_reg;
m_axis_req_tag_reg <= temp_m_axis_req_tag_reg;
m_axis_req_data_reg <= temp_m_axis_req_data_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_req_sel_reg <= m_axis_req_sel_int;
temp_m_axis_req_queue_reg <= m_axis_req_queue_int;
temp_m_axis_req_tag_reg <= m_axis_req_tag_int;
temp_m_axis_req_data_reg <= m_axis_req_data_int;
end
if (rst) begin
m_axis_req_valid_reg <= 1'b0;
m_axis_req_ready_int_reg <= 1'b0;
temp_m_axis_req_valid_reg <= 1'b0;
end
end
// request status demux
reg [S_REQ_TAG_WIDTH-1:0] m_axis_req_status_tag_reg = {S_REQ_TAG_WIDTH{1'b0}}, m_axis_req_status_tag_next;
reg m_axis_req_status_full_reg = 1'b0, m_axis_req_status_full_next;
reg m_axis_req_status_error_reg = 1'b0, m_axis_req_status_error_next;
reg [PORTS-1:0] m_axis_req_status_valid_reg = {PORTS{1'b0}}, m_axis_req_status_valid_next;
assign m_axis_req_status_tag = {PORTS{m_axis_req_status_tag_reg}};
assign m_axis_req_status_full = {PORTS{m_axis_req_status_full_reg}};
assign m_axis_req_status_error = {PORTS{m_axis_req_status_error_reg}};
assign m_axis_req_status_valid = m_axis_req_status_valid_reg;
always @* begin
m_axis_req_status_tag_next = s_axis_req_status_tag;
m_axis_req_status_full_next = s_axis_req_status_full;
m_axis_req_status_error_next = s_axis_req_status_error;
m_axis_req_status_valid_next = s_axis_req_status_valid << (PORTS > 1 ? (s_axis_req_status_tag >> S_REQ_TAG_WIDTH) : 0);
end
always @(posedge clk) begin
m_axis_req_status_tag_reg <= m_axis_req_status_tag_next;
m_axis_req_status_full_reg <= m_axis_req_status_full_next;
m_axis_req_status_error_reg <= m_axis_req_status_error_next;
m_axis_req_status_valid_reg <= m_axis_req_status_valid_next;
if (rst) begin
m_axis_req_status_valid_reg <= {PORTS{1'b0}};
end
end
endmodule
`resetall