1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_adapter.v
2018-10-25 10:29:31 -07:00

541 lines
21 KiB
Verilog

/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream bus width adapter
*/
module axis_adapter #
(
parameter S_DATA_WIDTH = 8,
parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8),
parameter S_KEEP_WIDTH = (S_DATA_WIDTH/8),
parameter M_DATA_WIDTH = 8,
parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8),
parameter M_KEEP_WIDTH = (M_DATA_WIDTH/8),
parameter ID_ENABLE = 0,
parameter ID_WIDTH = 8,
parameter DEST_ENABLE = 0,
parameter DEST_WIDTH = 8,
parameter USER_ENABLE = 1,
parameter USER_WIDTH = 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [S_DATA_WIDTH-1:0] s_axis_tdata,
input wire [S_KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
output wire [M_DATA_WIDTH-1:0] m_axis_tdata,
output wire [M_KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser
);
// force keep width to 1 when disabled
localparam S_KEEP_WIDTH_INT = S_KEEP_ENABLE ? S_KEEP_WIDTH : 1;
localparam M_KEEP_WIDTH_INT = M_KEEP_ENABLE ? M_KEEP_WIDTH : 1;
// bus word sizes (must be identical)
localparam S_DATA_WORD_SIZE = S_DATA_WIDTH / S_KEEP_WIDTH_INT;
localparam M_DATA_WORD_SIZE = M_DATA_WIDTH / M_KEEP_WIDTH_INT;
// output bus is wider
localparam EXPAND_BUS = M_KEEP_WIDTH_INT > S_KEEP_WIDTH_INT;
// total data and keep widths
localparam DATA_WIDTH = EXPAND_BUS ? M_DATA_WIDTH : S_DATA_WIDTH;
localparam KEEP_WIDTH = EXPAND_BUS ? M_KEEP_WIDTH_INT : S_KEEP_WIDTH_INT;
// required number of cycles to match widths
localparam CYCLE_COUNT = EXPAND_BUS ? (M_KEEP_WIDTH_INT / S_KEEP_WIDTH_INT) : (S_KEEP_WIDTH_INT / M_KEEP_WIDTH_INT);
localparam CYCLE_COUNT_WIDTH = CYCLE_COUNT == 1 ? 1 : $clog2(CYCLE_COUNT);
// data width and keep width per cycle
localparam CYCLE_DATA_WIDTH = DATA_WIDTH / CYCLE_COUNT;
localparam CYCLE_KEEP_WIDTH = KEEP_WIDTH / CYCLE_COUNT;
// bus width assertions
initial begin
if (S_DATA_WORD_SIZE * S_KEEP_WIDTH_INT != S_DATA_WIDTH) begin
$error("Error: input data width not evenly divisble");
$finish;
end
if (M_DATA_WORD_SIZE * M_KEEP_WIDTH_INT != M_DATA_WIDTH) begin
$error("Error: output data width not evenly divisble");
$finish;
end
if (S_DATA_WORD_SIZE != M_DATA_WORD_SIZE) begin
$error("Error: word size mismatch");
$finish;
end
end
// state register
localparam [2:0]
STATE_IDLE = 3'd0,
STATE_TRANSFER_IN = 3'd1,
STATE_TRANSFER_OUT = 3'd2;
reg [2:0] state_reg = STATE_IDLE, state_next;
reg [CYCLE_COUNT_WIDTH-1:0] cycle_count_reg = 0, cycle_count_next;
reg last_cycle;
reg [DATA_WIDTH-1:0] temp_tdata_reg = {DATA_WIDTH{1'b0}}, temp_tdata_next;
reg [KEEP_WIDTH-1:0] temp_tkeep_reg = {KEEP_WIDTH{1'b0}}, temp_tkeep_next;
reg temp_tlast_reg = 1'b0, temp_tlast_next;
reg [ID_WIDTH-1:0] temp_tid_reg = {ID_WIDTH{1'b0}}, temp_tid_next;
reg [DEST_WIDTH-1:0] temp_tdest_reg = {DEST_WIDTH{1'b0}}, temp_tdest_next;
reg [USER_WIDTH-1:0] temp_tuser_reg = {USER_WIDTH{1'b0}}, temp_tuser_next;
// internal datapath
reg [M_DATA_WIDTH-1:0] m_axis_tdata_int;
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg [ID_WIDTH-1:0] m_axis_tid_int;
reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
assign s_axis_tready = s_axis_tready_reg;
always @* begin
state_next = STATE_IDLE;
cycle_count_next = cycle_count_reg;
last_cycle = 0;
temp_tdata_next = temp_tdata_reg;
temp_tkeep_next = temp_tkeep_reg;
temp_tlast_next = temp_tlast_reg;
temp_tid_next = temp_tid_reg;
temp_tdest_next = temp_tdest_reg;
temp_tuser_next = temp_tuser_reg;
if (EXPAND_BUS) begin
m_axis_tdata_int = temp_tdata_reg;
m_axis_tkeep_int = temp_tkeep_reg;
m_axis_tlast_int = temp_tlast_reg;
end else begin
m_axis_tdata_int = {M_DATA_WIDTH{1'b0}};
m_axis_tkeep_int = {M_KEEP_WIDTH{1'b0}};
m_axis_tlast_int = 1'b0;
end
m_axis_tvalid_int = 1'b0;
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
s_axis_tready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state - no data in registers
if (CYCLE_COUNT == 1) begin
// output and input same width - just act like a register
// accept data next cycle if output register ready next cycle
s_axis_tready_next = m_axis_tready_int_early;
// transfer through
m_axis_tdata_int = s_axis_tdata;
m_axis_tkeep_int = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
m_axis_tvalid_int = s_axis_tvalid;
m_axis_tlast_int = s_axis_tlast;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
state_next = STATE_IDLE;
end else if (EXPAND_BUS) begin
// output bus is wider
// accept new data
s_axis_tready_next = 1'b1;
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store it in data register
// pass complete input word, zero-extended to temp register
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
// first input cycle complete
cycle_count_next = 1;
if (s_axis_tlast) begin
// got last signal on first cycle, so output it
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_IDLE;
end
end else begin
// output bus is narrower
// accept new data
s_axis_tready_next = 1'b1;
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store it in data register
cycle_count_next = 0;
// is this the last cycle?
if (CYCLE_COUNT == 1) begin
// last cycle by counter value
last_cycle = 1'b1;
end else if (S_KEEP_ENABLE && s_axis_tkeep[CYCLE_KEEP_WIDTH-1:0] != {CYCLE_KEEP_WIDTH{1'b1}}) begin
// last cycle by tkeep fall in current cycle
last_cycle = 1'b1;
end else if (S_KEEP_ENABLE && s_axis_tkeep[(CYCLE_KEEP_WIDTH*2)-1:CYCLE_KEEP_WIDTH] == {CYCLE_KEEP_WIDTH{1'b0}}) begin
// last cycle by tkeep fall at end of current cycle
last_cycle = 1'b1;
end else begin
last_cycle = 1'b0;
end
// pass complete input word, zero-extended to temp register
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
// short-circuit and get first word out the door
m_axis_tdata_int = s_axis_tdata[CYCLE_DATA_WIDTH-1:0];
m_axis_tkeep_int = s_axis_tkeep[CYCLE_KEEP_WIDTH-1:0];
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = s_axis_tlast & last_cycle;
m_axis_tid_int = s_axis_tid;
m_axis_tdest_int = s_axis_tdest;
m_axis_tuser_int = s_axis_tuser;
if (m_axis_tready_int_reg) begin
// if output register is ready for first word, then move on to the next one
cycle_count_next = 1;
end
if (!last_cycle || !m_axis_tready_int_reg) begin
// continue outputting words
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_IDLE;
end
end
end
STATE_TRANSFER_IN: begin
// transfer word to temp registers
// only used when output is wider
// accept new data
s_axis_tready_next = 1'b1;
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in - store in data register
temp_tdata_next[cycle_count_reg*CYCLE_DATA_WIDTH +: CYCLE_DATA_WIDTH] = s_axis_tdata;
temp_tkeep_next[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
cycle_count_next = cycle_count_reg + 1;
if ((cycle_count_reg == CYCLE_COUNT-1) || s_axis_tlast) begin
// terminated by counter or tlast signal, output complete word
// read input word next cycle if output will be ready
s_axis_tready_next = m_axis_tready_int_early;
state_next = STATE_TRANSFER_OUT;
end else begin
// more words to read
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_TRANSFER_IN;
end
end
STATE_TRANSFER_OUT: begin
// transfer word to output registers
if (EXPAND_BUS) begin
// output bus is wider
// do not accept new data
s_axis_tready_next = 1'b0;
// single-cycle output of entire stored word (output wider)
m_axis_tdata_int = temp_tdata_reg;
m_axis_tkeep_int = temp_tkeep_reg;
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = temp_tlast_reg;
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
if (m_axis_tready_int_reg) begin
// word transfer out
if (s_axis_tready && s_axis_tvalid) begin
// word transfer in
// pass complete input word, zero-extended to temp register
temp_tdata_next = s_axis_tdata;
temp_tkeep_next = S_KEEP_ENABLE ? s_axis_tkeep : 1'b1;
temp_tlast_next = s_axis_tlast;
temp_tid_next = s_axis_tid;
temp_tdest_next = s_axis_tdest;
temp_tuser_next = s_axis_tuser;
// first input cycle complete
cycle_count_next = 1;
if (s_axis_tlast) begin
// got last signal on first cycle, so output it
s_axis_tready_next = 1'b0;
state_next = STATE_TRANSFER_OUT;
end else begin
// otherwise, transfer in the rest of the words
s_axis_tready_next = 1'b1;
state_next = STATE_TRANSFER_IN;
end
end else begin
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end else begin
// output bus is narrower
// do not accept new data
s_axis_tready_next = 1'b0;
// is this the last cycle?
if (cycle_count_reg == CYCLE_COUNT-1) begin
// last cycle by counter value
last_cycle = 1'b1;
end else if (temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] != {CYCLE_KEEP_WIDTH{1'b1}}) begin
// last cycle by tkeep fall in current cycle
last_cycle = 1'b1;
end else if (temp_tkeep_reg[(cycle_count_reg+1)*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH] == {CYCLE_KEEP_WIDTH{1'b0}}) begin
// last cycle by tkeep fall at end of current cycle
last_cycle = 1'b1;
end else begin
last_cycle = 1'b0;
end
// output current part of stored word (output narrower)
m_axis_tdata_int = temp_tdata_reg[cycle_count_reg*CYCLE_DATA_WIDTH +: CYCLE_DATA_WIDTH];
m_axis_tkeep_int = temp_tkeep_reg[cycle_count_reg*CYCLE_KEEP_WIDTH +: CYCLE_KEEP_WIDTH];
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = temp_tlast_reg && last_cycle;
m_axis_tid_int = temp_tid_reg;
m_axis_tdest_int = temp_tdest_reg;
m_axis_tuser_int = temp_tuser_reg;
if (m_axis_tready_int_reg) begin
// word transfer out
cycle_count_next = cycle_count_reg + 1;
if (last_cycle) begin
// terminated by counter or tlast signal
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end else begin
// more words to write
state_next = STATE_TRANSFER_OUT;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
s_axis_tready_reg <= 1'b0;
end else begin
state_reg <= state_next;
s_axis_tready_reg <= s_axis_tready_next;
end
cycle_count_reg <= cycle_count_next;
temp_tdata_reg <= temp_tdata_next;
temp_tkeep_reg <= temp_tkeep_next;
temp_tlast_reg <= temp_tlast_next;
temp_tid_reg <= temp_tid_next;
temp_tdest_reg <= temp_tdest_next;
temp_tuser_reg <= temp_tuser_next;
end
// output datapath logic
reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [M_DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule