1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_tap.v
2019-07-24 13:54:21 -07:00

329 lines
12 KiB
Verilog

/*
Copyright (c) 2015-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream tap
*/
module axis_tap #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8),
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1
)
(
input wire clk,
input wire rst,
/*
* AXI tap
*/
input wire [DATA_WIDTH-1:0] tap_axis_tdata,
input wire [KEEP_WIDTH-1:0] tap_axis_tkeep,
input wire tap_axis_tvalid,
input wire tap_axis_tready,
input wire tap_axis_tlast,
input wire [ID_WIDTH-1:0] tap_axis_tid,
input wire [DEST_WIDTH-1:0] tap_axis_tdest,
input wire [USER_WIDTH-1:0] tap_axis_tuser,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser
);
// datapath control signals
reg store_last_word;
reg [ID_WIDTH-1:0] last_word_id_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] last_word_dest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] last_word_user_reg = {USER_WIDTH{1'b0}};
// internal datapath
reg [DATA_WIDTH-1:0] m_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg [ID_WIDTH-1:0] m_axis_tid_int;
reg [DEST_WIDTH-1:0] m_axis_tdest_int;
reg [USER_WIDTH-1:0] m_axis_tuser_int;
wire m_axis_tready_int_early;
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_TRANSFER = 2'd1,
STATE_TRUNCATE = 2'd2,
STATE_WAIT = 2'd3;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg frame_reg = 1'b0, frame_next;
always @* begin
state_next = STATE_IDLE;
store_last_word = 1'b0;
frame_next = frame_reg;
m_axis_tdata_int = {DATA_WIDTH{1'b0}};
m_axis_tkeep_int = {KEEP_WIDTH{1'b0}};
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tid_int = {ID_WIDTH{1'b0}};
m_axis_tdest_int = {DEST_WIDTH{1'b0}};
m_axis_tuser_int = {USER_WIDTH{1'b0}};
if (tap_axis_tready && tap_axis_tvalid) begin
frame_next = !tap_axis_tlast;
end
case (state_reg)
STATE_IDLE: begin
if (tap_axis_tready && tap_axis_tvalid) begin
// start of frame
if (m_axis_tready_int_reg) begin
m_axis_tdata_int = tap_axis_tdata;
m_axis_tkeep_int = tap_axis_tkeep;
m_axis_tvalid_int = tap_axis_tvalid && tap_axis_tready;
m_axis_tlast_int = tap_axis_tlast;
m_axis_tid_int = tap_axis_tid;
m_axis_tdest_int = tap_axis_tdest;
m_axis_tuser_int = tap_axis_tuser;
if (tap_axis_tlast) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_TRANSFER;
end
end else begin
state_next = STATE_WAIT;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_TRANSFER: begin
if (tap_axis_tready && tap_axis_tvalid) begin
// transfer data
if (m_axis_tready_int_reg) begin
m_axis_tdata_int = tap_axis_tdata;
m_axis_tkeep_int = tap_axis_tkeep;
m_axis_tvalid_int = tap_axis_tvalid && tap_axis_tready;
m_axis_tlast_int = tap_axis_tlast;
m_axis_tid_int = tap_axis_tid;
m_axis_tdest_int = tap_axis_tdest;
m_axis_tuser_int = tap_axis_tuser;
if (tap_axis_tlast) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_TRANSFER;
end
end else begin
store_last_word = 1'b1;
state_next = STATE_TRUNCATE;
end
end else begin
state_next = STATE_TRANSFER;
end
end
STATE_TRUNCATE: begin
if (m_axis_tready_int_reg) begin
m_axis_tdata_int = {DATA_WIDTH{1'b0}};
m_axis_tkeep_int = {{KEEP_WIDTH-1{1'b0}}, 1'b1};
m_axis_tvalid_int = 1'b1;
m_axis_tlast_int = 1'b1;
m_axis_tid_int = last_word_id_reg;
m_axis_tdest_int = last_word_dest_reg;
m_axis_tuser_int = (last_word_user_reg & ~USER_BAD_FRAME_MASK) | (USER_BAD_FRAME_VALUE & USER_BAD_FRAME_MASK);
if (frame_next) begin
state_next = STATE_WAIT;
end else begin
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_TRUNCATE;
end
end
STATE_WAIT: begin
if (tap_axis_tready && tap_axis_tvalid) begin
if (tap_axis_tlast) begin
state_next = STATE_IDLE;
end else begin
state_next = STATE_WAIT;
end
end else begin
state_next = STATE_WAIT;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
frame_reg <= 1'b0;
end else begin
state_reg <= state_next;
frame_reg <= frame_next;
end
if (store_last_word) begin
last_word_id_reg <= tap_axis_tid;
last_word_dest_reg <= tap_axis_tdest;
last_word_user_reg <= tap_axis_tuser;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] temp_m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] temp_m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] temp_m_axis_tuser_reg = {USER_WIDTH{1'b0}};
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end else begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tid_reg <= m_axis_tid_int;
m_axis_tdest_reg <= m_axis_tdest_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tid_reg <= temp_m_axis_tid_reg;
m_axis_tdest_reg <= temp_m_axis_tdest_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tid_reg <= m_axis_tid_int;
temp_m_axis_tdest_reg <= m_axis_tdest_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
end
endmodule