1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/tb/test_axi_cdma_32.py
2018-12-06 17:27:44 -08:00

351 lines
11 KiB
Python
Executable File

#!/usr/bin/env python
"""
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import os
import axi
import axis_ep
module = 'axi_cdma'
testbench = 'test_%s_32' % module
srcs = []
srcs.append("../rtl/%s.v" % module)
srcs.append("%s.v" % testbench)
src = ' '.join(srcs)
build_cmd = "iverilog -o %s.vvp %s" % (testbench, src)
def bench():
# Parameters
AXI_DATA_WIDTH = 32
AXI_ADDR_WIDTH = 16
AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8)
AXI_ID_WIDTH = 8
AXI_MAX_BURST_LEN = 16
LEN_WIDTH = 20
TAG_WIDTH = 8
ENABLE_UNALIGNED = 0
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
s_axis_desc_read_addr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
s_axis_desc_write_addr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
s_axis_desc_len = Signal(intbv(0)[LEN_WIDTH:])
s_axis_desc_tag = Signal(intbv(0)[TAG_WIDTH:])
s_axis_desc_valid = Signal(bool(0))
m_axi_awready = Signal(bool(0))
m_axi_wready = Signal(bool(0))
m_axi_bid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_bresp = Signal(intbv(0)[2:])
m_axi_bvalid = Signal(bool(0))
m_axi_arready = Signal(bool(0))
m_axi_rid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_rdata = Signal(intbv(0)[AXI_DATA_WIDTH:])
m_axi_rresp = Signal(intbv(0)[2:])
m_axi_rlast = Signal(bool(0))
m_axi_rvalid = Signal(bool(0))
enable = Signal(bool(0))
# Outputs
s_axis_desc_ready = Signal(bool(0))
m_axis_desc_status_tag = Signal(intbv(0)[TAG_WIDTH:])
m_axis_desc_status_valid = Signal(bool(0))
m_axi_awid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_awaddr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
m_axi_awlen = Signal(intbv(0)[8:])
m_axi_awsize = Signal(intbv(2)[3:])
m_axi_awburst = Signal(intbv(1)[2:])
m_axi_awlock = Signal(bool(0))
m_axi_awcache = Signal(intbv(0)[4:])
m_axi_awprot = Signal(intbv(0)[3:])
m_axi_awvalid = Signal(bool(0))
m_axi_wdata = Signal(intbv(0)[AXI_DATA_WIDTH:])
m_axi_wstrb = Signal(intbv(0)[AXI_STRB_WIDTH:])
m_axi_wlast = Signal(bool(0))
m_axi_wvalid = Signal(bool(0))
m_axi_bready = Signal(bool(0))
m_axi_arid = Signal(intbv(0)[AXI_ID_WIDTH:])
m_axi_araddr = Signal(intbv(0)[AXI_ADDR_WIDTH:])
m_axi_arlen = Signal(intbv(0)[8:])
m_axi_arsize = Signal(intbv(2)[3:])
m_axi_arburst = Signal(intbv(1)[2:])
m_axi_arlock = Signal(bool(0))
m_axi_arcache = Signal(intbv(0)[4:])
m_axi_arprot = Signal(intbv(0)[3:])
m_axi_arvalid = Signal(bool(0))
m_axi_rready = Signal(bool(0))
# AXI4 RAM model
axi_ram_inst = axi.AXIRam(2**16)
axi_ram_pause = Signal(bool(False))
axi_ram_port0 = axi_ram_inst.create_port(
clk,
s_axi_awid=m_axi_awid,
s_axi_awaddr=m_axi_awaddr,
s_axi_awlen=m_axi_awlen,
s_axi_awsize=m_axi_awsize,
s_axi_awburst=m_axi_awburst,
s_axi_awlock=m_axi_awlock,
s_axi_awcache=m_axi_awcache,
s_axi_awprot=m_axi_awprot,
s_axi_awvalid=m_axi_awvalid,
s_axi_awready=m_axi_awready,
s_axi_wdata=m_axi_wdata,
s_axi_wstrb=m_axi_wstrb,
s_axi_wlast=m_axi_wlast,
s_axi_wvalid=m_axi_wvalid,
s_axi_wready=m_axi_wready,
s_axi_bid=m_axi_bid,
s_axi_bresp=m_axi_bresp,
s_axi_bvalid=m_axi_bvalid,
s_axi_bready=m_axi_bready,
s_axi_arid=m_axi_arid,
s_axi_araddr=m_axi_araddr,
s_axi_arlen=m_axi_arlen,
s_axi_arsize=m_axi_arsize,
s_axi_arburst=m_axi_arburst,
s_axi_arlock=m_axi_arlock,
s_axi_arcache=m_axi_arcache,
s_axi_arprot=m_axi_arprot,
s_axi_arvalid=m_axi_arvalid,
s_axi_arready=m_axi_arready,
s_axi_rid=m_axi_rid,
s_axi_rdata=m_axi_rdata,
s_axi_rresp=m_axi_rresp,
s_axi_rlast=m_axi_rlast,
s_axi_rvalid=m_axi_rvalid,
s_axi_rready=m_axi_rready,
pause=axi_ram_pause,
name='port0'
)
# sources and sinks
desc_source = axis_ep.AXIStreamSource()
desc_source_pause = Signal(bool(False))
desc_source_logic = desc_source.create_logic(
clk,
rst,
tdata=(s_axis_desc_read_addr, s_axis_desc_write_addr, s_axis_desc_len, s_axis_desc_tag),
tvalid=s_axis_desc_valid,
tready=s_axis_desc_ready,
pause=desc_source_pause,
name='desc_source'
)
desc_status_sink = axis_ep.AXIStreamSink()
desc_status_sink_logic = desc_status_sink.create_logic(
clk,
rst,
tdata=(m_axis_desc_status_tag,),
tvalid=m_axis_desc_status_valid,
name='desc_status_sink'
)
# DUT
if os.system(build_cmd):
raise Exception("Error running build command")
dut = Cosimulation(
"vvp -m myhdl %s.vvp -lxt2" % testbench,
clk=clk,
rst=rst,
current_test=current_test,
s_axis_desc_read_addr=s_axis_desc_read_addr,
s_axis_desc_write_addr=s_axis_desc_write_addr,
s_axis_desc_len=s_axis_desc_len,
s_axis_desc_tag=s_axis_desc_tag,
s_axis_desc_valid=s_axis_desc_valid,
s_axis_desc_ready=s_axis_desc_ready,
m_axis_desc_status_tag=m_axis_desc_status_tag,
m_axis_desc_status_valid=m_axis_desc_status_valid,
m_axi_awid=m_axi_awid,
m_axi_awaddr=m_axi_awaddr,
m_axi_awlen=m_axi_awlen,
m_axi_awsize=m_axi_awsize,
m_axi_awburst=m_axi_awburst,
m_axi_awlock=m_axi_awlock,
m_axi_awcache=m_axi_awcache,
m_axi_awprot=m_axi_awprot,
m_axi_awvalid=m_axi_awvalid,
m_axi_awready=m_axi_awready,
m_axi_wdata=m_axi_wdata,
m_axi_wstrb=m_axi_wstrb,
m_axi_wlast=m_axi_wlast,
m_axi_wvalid=m_axi_wvalid,
m_axi_wready=m_axi_wready,
m_axi_bid=m_axi_bid,
m_axi_bresp=m_axi_bresp,
m_axi_bvalid=m_axi_bvalid,
m_axi_bready=m_axi_bready,
m_axi_arid=m_axi_arid,
m_axi_araddr=m_axi_araddr,
m_axi_arlen=m_axi_arlen,
m_axi_arsize=m_axi_arsize,
m_axi_arburst=m_axi_arburst,
m_axi_arlock=m_axi_arlock,
m_axi_arcache=m_axi_arcache,
m_axi_arprot=m_axi_arprot,
m_axi_arvalid=m_axi_arvalid,
m_axi_arready=m_axi_arready,
m_axi_rid=m_axi_rid,
m_axi_rdata=m_axi_rdata,
m_axi_rresp=m_axi_rresp,
m_axi_rlast=m_axi_rlast,
m_axi_rvalid=m_axi_rvalid,
m_axi_rready=m_axi_rready,
enable=enable
)
@always(delay(4))
def clkgen():
clk.next = not clk
def wait_normal():
while desc_status_sink.empty():
yield clk.posedge
def wait_pause_ram():
while desc_status_sink.empty():
axi_ram_pause.next = True
yield clk.posedge
yield clk.posedge
yield clk.posedge
axi_ram_pause.next = False
yield clk.posedge
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
# testbench stimulus
cur_tag = 1
enable.next = 1
yield clk.posedge
print("test 1: transfer")
current_test.next = 1
read_addr = 0x00000000
write_addr = 0x00008000
test_data = b'\x11\x22\x33\x44'
axi_ram_inst.write_mem(read_addr, test_data)
data = axi_ram_inst.read_mem(read_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
desc_source.send([(read_addr, write_addr, len(test_data), cur_tag)])
yield desc_status_sink.wait(1000)
status = desc_status_sink.recv()
print(status)
assert status.data[0][0] == cur_tag
data = axi_ram_inst.read_mem(write_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axi_ram_inst.read_mem(write_addr, len(test_data)) == test_data
cur_tag = (cur_tag + 1) % 256
yield delay(100)
yield clk.posedge
print("test 2: various transfers")
current_test.next = 2
for length in list(range(1,17))+[128]:
for read_offset in list(range(8,16,4))+list(range(4096-8,4096,4)):
for write_offset in list(range(8,16,4))+list(range(4096-8,4096,4)):
for wait in wait_normal, wait_pause_ram:
print("length %d, read offset %d, write offset %d"% (length, read_offset, write_offset))
read_addr = read_offset
write_addr = 0x00008000+write_offset
test_data = bytearray([x%256 for x in range(length)])
axi_ram_inst.write_mem(read_addr, test_data)
axi_ram_inst.write_mem(write_addr & 0xffff80, b'\xaa'*(len(test_data)+256))
data = axi_ram_inst.read_mem(read_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
desc_source.send([(read_addr, write_addr, len(test_data), cur_tag)])
yield wait()
status = desc_status_sink.recv()
print(status)
assert status.data[0][0] == cur_tag
data = axi_ram_inst.read_mem(write_addr, 32)
for i in range(0, len(data), 16):
print(" ".join(("{:02x}".format(c) for c in bytearray(data[i:i+16]))))
assert axi_ram_inst.read_mem(write_addr-8, len(test_data)+16) == b'\xaa'*8+test_data+b'\xaa'*8
cur_tag = (cur_tag + 1) % 256
yield delay(100)
raise StopSimulation
return instances()
def test_bench():
sim = Simulation(bench())
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()