mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
451 lines
15 KiB
Verilog
451 lines
15 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2018 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* AXI4 FIFO (write)
|
|
*/
|
|
module axi_fifo_wr #
|
|
(
|
|
// Width of data bus in bits
|
|
parameter DATA_WIDTH = 32,
|
|
// Width of address bus in bits
|
|
parameter ADDR_WIDTH = 32,
|
|
// Width of wstrb (width of data bus in words)
|
|
parameter STRB_WIDTH = (DATA_WIDTH/8),
|
|
// Width of ID signal
|
|
parameter ID_WIDTH = 8,
|
|
// Propagate awuser signal
|
|
parameter AWUSER_ENABLE = 0,
|
|
// Width of awuser signal
|
|
parameter AWUSER_WIDTH = 1,
|
|
// Propagate wuser signal
|
|
parameter WUSER_ENABLE = 0,
|
|
// Width of wuser signal
|
|
parameter WUSER_WIDTH = 1,
|
|
// Propagate buser signal
|
|
parameter BUSER_ENABLE = 0,
|
|
// Width of buser signal
|
|
parameter BUSER_WIDTH = 1,
|
|
// Write data FIFO depth (cycles)
|
|
parameter FIFO_DEPTH = 32,
|
|
// Hold write address until write data in FIFO, if possible
|
|
parameter FIFO_DELAY = 0
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* AXI slave interface
|
|
*/
|
|
input wire [ID_WIDTH-1:0] s_axi_awid,
|
|
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
|
|
input wire [7:0] s_axi_awlen,
|
|
input wire [2:0] s_axi_awsize,
|
|
input wire [1:0] s_axi_awburst,
|
|
input wire s_axi_awlock,
|
|
input wire [3:0] s_axi_awcache,
|
|
input wire [2:0] s_axi_awprot,
|
|
input wire [3:0] s_axi_awqos,
|
|
input wire [3:0] s_axi_awregion,
|
|
input wire [AWUSER_WIDTH-1:0] s_axi_awuser,
|
|
input wire s_axi_awvalid,
|
|
output wire s_axi_awready,
|
|
input wire [DATA_WIDTH-1:0] s_axi_wdata,
|
|
input wire [STRB_WIDTH-1:0] s_axi_wstrb,
|
|
input wire s_axi_wlast,
|
|
input wire [WUSER_WIDTH-1:0] s_axi_wuser,
|
|
input wire s_axi_wvalid,
|
|
output wire s_axi_wready,
|
|
output wire [ID_WIDTH-1:0] s_axi_bid,
|
|
output wire [1:0] s_axi_bresp,
|
|
output wire [BUSER_WIDTH-1:0] s_axi_buser,
|
|
output wire s_axi_bvalid,
|
|
input wire s_axi_bready,
|
|
|
|
/*
|
|
* AXI master interface
|
|
*/
|
|
output wire [ID_WIDTH-1:0] m_axi_awid,
|
|
output wire [ADDR_WIDTH-1:0] m_axi_awaddr,
|
|
output wire [7:0] m_axi_awlen,
|
|
output wire [2:0] m_axi_awsize,
|
|
output wire [1:0] m_axi_awburst,
|
|
output wire m_axi_awlock,
|
|
output wire [3:0] m_axi_awcache,
|
|
output wire [2:0] m_axi_awprot,
|
|
output wire [3:0] m_axi_awqos,
|
|
output wire [3:0] m_axi_awregion,
|
|
output wire [AWUSER_WIDTH-1:0] m_axi_awuser,
|
|
output wire m_axi_awvalid,
|
|
input wire m_axi_awready,
|
|
output wire [DATA_WIDTH-1:0] m_axi_wdata,
|
|
output wire [STRB_WIDTH-1:0] m_axi_wstrb,
|
|
output wire m_axi_wlast,
|
|
output wire [WUSER_WIDTH-1:0] m_axi_wuser,
|
|
output wire m_axi_wvalid,
|
|
input wire m_axi_wready,
|
|
input wire [ID_WIDTH-1:0] m_axi_bid,
|
|
input wire [1:0] m_axi_bresp,
|
|
input wire [BUSER_WIDTH-1:0] m_axi_buser,
|
|
input wire m_axi_bvalid,
|
|
output wire m_axi_bready
|
|
);
|
|
|
|
parameter STRB_OFFSET = DATA_WIDTH;
|
|
parameter LAST_OFFSET = STRB_OFFSET + STRB_WIDTH;
|
|
parameter WUSER_OFFSET = LAST_OFFSET + 1;
|
|
parameter WWIDTH = WUSER_OFFSET + (WUSER_ENABLE ? WUSER_WIDTH : 0);
|
|
|
|
parameter FIFO_ADDR_WIDTH = $clog2(FIFO_DEPTH);
|
|
|
|
reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
|
|
reg [FIFO_ADDR_WIDTH:0] wr_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
|
|
reg [FIFO_ADDR_WIDTH:0] rd_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
|
|
reg [WWIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0];
|
|
reg [WWIDTH-1:0] mem_read_data_reg;
|
|
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
|
|
|
|
wire [WWIDTH-1:0] s_axi_w;
|
|
|
|
reg [WWIDTH-1:0] m_axi_w_reg;
|
|
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
|
|
|
|
// full when first MSB different but rest same
|
|
wire full = ((wr_ptr_reg[FIFO_ADDR_WIDTH] != rd_ptr_reg[FIFO_ADDR_WIDTH]) &&
|
|
(wr_ptr_reg[FIFO_ADDR_WIDTH-1:0] == rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]));
|
|
// empty when pointers match exactly
|
|
wire empty = wr_ptr_reg == rd_ptr_reg;
|
|
|
|
wire hold;
|
|
|
|
// control signals
|
|
reg write;
|
|
reg read;
|
|
reg store_output;
|
|
|
|
assign s_axi_wready = !full && !hold;
|
|
|
|
generate
|
|
assign s_axi_w[DATA_WIDTH-1:0] = s_axi_wdata;
|
|
assign s_axi_w[STRB_OFFSET +: STRB_WIDTH] = s_axi_wstrb;
|
|
assign s_axi_w[LAST_OFFSET] = s_axi_wlast;
|
|
if (WUSER_ENABLE) assign s_axi_w[WUSER_OFFSET +: WUSER_WIDTH] = s_axi_wuser;
|
|
endgenerate
|
|
|
|
generate
|
|
|
|
if (FIFO_DELAY) begin
|
|
// store AW channel value until W channel burst is stored in FIFO or FIFO is full
|
|
|
|
localparam [1:0]
|
|
STATE_IDLE = 2'd0,
|
|
STATE_TRANSFER_IN = 2'd1,
|
|
STATE_TRANSFER_OUT = 2'd2;
|
|
|
|
reg [1:0] state_reg = STATE_IDLE, state_next;
|
|
|
|
reg hold_reg = 1'b1, hold_next;
|
|
reg [8:0] count_reg = 9'd0, count_next;
|
|
|
|
reg [ID_WIDTH-1:0] m_axi_awid_reg = {ID_WIDTH{1'b0}}, m_axi_awid_next;
|
|
reg [ADDR_WIDTH-1:0] m_axi_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
|
|
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
|
|
reg [2:0] m_axi_awsize_reg = 3'd0, m_axi_awsize_next;
|
|
reg [1:0] m_axi_awburst_reg = 2'd0, m_axi_awburst_next;
|
|
reg m_axi_awlock_reg = 1'b0, m_axi_awlock_next;
|
|
reg [3:0] m_axi_awcache_reg = 4'd0, m_axi_awcache_next;
|
|
reg [2:0] m_axi_awprot_reg = 3'd0, m_axi_awprot_next;
|
|
reg [3:0] m_axi_awqos_reg = 4'd0, m_axi_awqos_next;
|
|
reg [3:0] m_axi_awregion_reg = 4'd0, m_axi_awregion_next;
|
|
reg [AWUSER_WIDTH-1:0] m_axi_awuser_reg = {AWUSER_WIDTH{1'b0}}, m_axi_awuser_next;
|
|
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
|
|
|
|
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
|
|
|
|
assign m_axi_awid = m_axi_awid_reg;
|
|
assign m_axi_awaddr = m_axi_awaddr_reg;
|
|
assign m_axi_awlen = m_axi_awlen_reg;
|
|
assign m_axi_awsize = m_axi_awsize_reg;
|
|
assign m_axi_awburst = m_axi_awburst_reg;
|
|
assign m_axi_awlock = m_axi_awlock_reg;
|
|
assign m_axi_awcache = m_axi_awcache_reg;
|
|
assign m_axi_awprot = m_axi_awprot_reg;
|
|
assign m_axi_awqos = m_axi_awqos_reg;
|
|
assign m_axi_awregion = m_axi_awregion_reg;
|
|
assign m_axi_awuser = AWUSER_ENABLE ? m_axi_awuser_reg : {AWUSER_WIDTH{1'b0}};
|
|
assign m_axi_awvalid = m_axi_awvalid_reg;
|
|
|
|
assign s_axi_awready = s_axi_awready_reg;
|
|
|
|
assign hold = hold_reg;
|
|
|
|
always @* begin
|
|
state_next = STATE_IDLE;
|
|
|
|
hold_next = hold_reg;
|
|
count_next = count_reg;
|
|
|
|
m_axi_awid_next = m_axi_awid_reg;
|
|
m_axi_awaddr_next = m_axi_awaddr_reg;
|
|
m_axi_awlen_next = m_axi_awlen_reg;
|
|
m_axi_awsize_next = m_axi_awsize_reg;
|
|
m_axi_awburst_next = m_axi_awburst_reg;
|
|
m_axi_awlock_next = m_axi_awlock_reg;
|
|
m_axi_awcache_next = m_axi_awcache_reg;
|
|
m_axi_awprot_next = m_axi_awprot_reg;
|
|
m_axi_awqos_next = m_axi_awqos_reg;
|
|
m_axi_awregion_next = m_axi_awregion_reg;
|
|
m_axi_awuser_next = m_axi_awuser_reg;
|
|
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
|
|
s_axi_awready_next = s_axi_awready_reg;
|
|
|
|
case (state_reg)
|
|
STATE_IDLE: begin
|
|
s_axi_awready_next = !m_axi_awvalid;
|
|
hold_next = 1'b1;
|
|
|
|
if (s_axi_awready & s_axi_awvalid) begin
|
|
s_axi_awready_next = 1'b0;
|
|
|
|
m_axi_awid_next = s_axi_awid;
|
|
m_axi_awaddr_next = s_axi_awaddr;
|
|
m_axi_awlen_next = s_axi_awlen;
|
|
m_axi_awsize_next = s_axi_awsize;
|
|
m_axi_awburst_next = s_axi_awburst;
|
|
m_axi_awlock_next = s_axi_awlock;
|
|
m_axi_awcache_next = s_axi_awcache;
|
|
m_axi_awprot_next = s_axi_awprot;
|
|
m_axi_awqos_next = s_axi_awqos;
|
|
m_axi_awregion_next = s_axi_awregion;
|
|
m_axi_awuser_next = s_axi_awuser;
|
|
|
|
hold_next = 1'b0;
|
|
count_next = 0;
|
|
state_next = STATE_TRANSFER_IN;
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end
|
|
STATE_TRANSFER_IN: begin
|
|
s_axi_awready_next = 1'b0;
|
|
hold_next = 1'b0;
|
|
|
|
if (s_axi_wready & s_axi_wvalid) begin
|
|
count_next = count_reg + 1;
|
|
if (count_next == 2**FIFO_ADDR_WIDTH) begin
|
|
m_axi_awvalid_next = 1'b1;
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end else if (count_reg == m_axi_awlen) begin
|
|
m_axi_awvalid_next = 1'b1;
|
|
hold_next = 1'b1;
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
state_next = STATE_TRANSFER_IN;
|
|
end
|
|
end else begin
|
|
state_next = STATE_TRANSFER_IN;
|
|
end
|
|
end
|
|
STATE_TRANSFER_OUT: begin
|
|
s_axi_awready_next = 1'b0;
|
|
hold_next = 1'b0;
|
|
|
|
if (s_axi_wready & s_axi_wvalid) begin
|
|
count_next = count_reg + 1;
|
|
if (count_reg == m_axi_awlen) begin
|
|
hold_next = 1'b1;
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end
|
|
end else begin
|
|
state_next = STATE_TRANSFER_OUT;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
state_reg <= STATE_IDLE;
|
|
hold_reg <= 1'b1;
|
|
m_axi_awvalid_reg <= 1'b0;
|
|
s_axi_awready_reg <= 1'b0;
|
|
end else begin
|
|
state_reg <= state_next;
|
|
hold_reg <= hold_next;
|
|
m_axi_awvalid_reg <= m_axi_awvalid_next;
|
|
s_axi_awready_reg <= s_axi_awready_next;
|
|
end
|
|
|
|
count_reg <= count_next;
|
|
|
|
m_axi_awid_reg <= m_axi_awid_next;
|
|
m_axi_awaddr_reg <= m_axi_awaddr_next;
|
|
m_axi_awlen_reg <= m_axi_awlen_next;
|
|
m_axi_awsize_reg <= m_axi_awsize_next;
|
|
m_axi_awburst_reg <= m_axi_awburst_next;
|
|
m_axi_awlock_reg <= m_axi_awlock_next;
|
|
m_axi_awcache_reg <= m_axi_awcache_next;
|
|
m_axi_awprot_reg <= m_axi_awprot_next;
|
|
m_axi_awqos_reg <= m_axi_awqos_next;
|
|
m_axi_awregion_reg <= m_axi_awregion_next;
|
|
m_axi_awuser_reg <= m_axi_awuser_next;
|
|
end
|
|
end else begin
|
|
// bypass AW channel
|
|
assign m_axi_awid = s_axi_awid;
|
|
assign m_axi_awaddr = s_axi_awaddr;
|
|
assign m_axi_awlen = s_axi_awlen;
|
|
assign m_axi_awsize = s_axi_awsize;
|
|
assign m_axi_awburst = s_axi_awburst;
|
|
assign m_axi_awlock = s_axi_awlock;
|
|
assign m_axi_awcache = s_axi_awcache;
|
|
assign m_axi_awprot = s_axi_awprot;
|
|
assign m_axi_awqos = s_axi_awqos;
|
|
assign m_axi_awregion = s_axi_awregion;
|
|
assign m_axi_awuser = AWUSER_ENABLE ? s_axi_awuser : {AWUSER_WIDTH{1'b0}};
|
|
assign m_axi_awvalid = s_axi_awvalid;
|
|
assign s_axi_awready = m_axi_awready;
|
|
|
|
assign hold = 1'b0;
|
|
end
|
|
|
|
endgenerate
|
|
|
|
// bypass B channel
|
|
assign s_axi_bid = m_axi_bid;
|
|
assign s_axi_bresp = m_axi_bresp;
|
|
assign s_axi_buser = BUSER_ENABLE ? m_axi_buser : {BUSER_WIDTH{1'b0}};
|
|
assign s_axi_bvalid = m_axi_bvalid;
|
|
assign m_axi_bready = s_axi_bready;
|
|
|
|
assign m_axi_wvalid = m_axi_wvalid_reg;
|
|
|
|
assign m_axi_wdata = m_axi_w_reg[DATA_WIDTH-1:0];
|
|
assign m_axi_wstrb = m_axi_w_reg[STRB_OFFSET +: STRB_WIDTH];
|
|
assign m_axi_wlast = m_axi_w_reg[LAST_OFFSET];
|
|
assign m_axi_wuser = WUSER_ENABLE ? m_axi_w_reg[WUSER_OFFSET +: WUSER_WIDTH] : {WUSER_WIDTH{1'b0}};
|
|
|
|
// Write logic
|
|
always @* begin
|
|
write = 1'b0;
|
|
|
|
wr_ptr_next = wr_ptr_reg;
|
|
|
|
if (s_axi_wvalid) begin
|
|
// input data valid
|
|
if (!full && !hold) begin
|
|
// not full, perform write
|
|
write = 1'b1;
|
|
wr_ptr_next = wr_ptr_reg + 1;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
end else begin
|
|
wr_ptr_reg <= wr_ptr_next;
|
|
end
|
|
|
|
wr_addr_reg <= wr_ptr_next;
|
|
|
|
if (write) begin
|
|
mem[wr_addr_reg[FIFO_ADDR_WIDTH-1:0]] <= s_axi_w;
|
|
end
|
|
end
|
|
|
|
// Read logic
|
|
always @* begin
|
|
read = 1'b0;
|
|
|
|
rd_ptr_next = rd_ptr_reg;
|
|
|
|
mem_read_data_valid_next = mem_read_data_valid_reg;
|
|
|
|
if (store_output || !mem_read_data_valid_reg) begin
|
|
// output data not valid OR currently being transferred
|
|
if (!empty) begin
|
|
// not empty, perform read
|
|
read = 1'b1;
|
|
mem_read_data_valid_next = 1'b1;
|
|
rd_ptr_next = rd_ptr_reg + 1;
|
|
end else begin
|
|
// empty, invalidate
|
|
mem_read_data_valid_next = 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
|
|
mem_read_data_valid_reg <= 1'b0;
|
|
end else begin
|
|
rd_ptr_reg <= rd_ptr_next;
|
|
mem_read_data_valid_reg <= mem_read_data_valid_next;
|
|
end
|
|
|
|
rd_addr_reg <= rd_ptr_next;
|
|
|
|
if (read) begin
|
|
mem_read_data_reg <= mem[rd_addr_reg[FIFO_ADDR_WIDTH-1:0]];
|
|
end
|
|
end
|
|
|
|
// Output register
|
|
always @* begin
|
|
store_output = 1'b0;
|
|
|
|
m_axi_wvalid_next = m_axi_wvalid_reg;
|
|
|
|
if (m_axi_wready || !m_axi_wvalid) begin
|
|
store_output = 1'b1;
|
|
m_axi_wvalid_next = mem_read_data_valid_reg;
|
|
end
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
m_axi_wvalid_reg <= 1'b0;
|
|
end else begin
|
|
m_axi_wvalid_reg <= m_axi_wvalid_next;
|
|
end
|
|
|
|
if (store_output) begin
|
|
m_axi_w_reg <= mem_read_data_reg;
|
|
end
|
|
end
|
|
|
|
endmodule
|