1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axi_fifo_wr.v
2019-07-24 17:49:48 -07:00

451 lines
15 KiB
Verilog

/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4 FIFO (write)
*/
module axi_fifo_wr #
(
// Width of data bus in bits
parameter DATA_WIDTH = 32,
// Width of address bus in bits
parameter ADDR_WIDTH = 32,
// Width of wstrb (width of data bus in words)
parameter STRB_WIDTH = (DATA_WIDTH/8),
// Width of ID signal
parameter ID_WIDTH = 8,
// Propagate awuser signal
parameter AWUSER_ENABLE = 0,
// Width of awuser signal
parameter AWUSER_WIDTH = 1,
// Propagate wuser signal
parameter WUSER_ENABLE = 0,
// Width of wuser signal
parameter WUSER_WIDTH = 1,
// Propagate buser signal
parameter BUSER_ENABLE = 0,
// Width of buser signal
parameter BUSER_WIDTH = 1,
// Write data FIFO depth (cycles)
parameter FIFO_DEPTH = 32,
// Hold write address until write data in FIFO, if possible
parameter FIFO_DELAY = 0
)
(
input wire clk,
input wire rst,
/*
* AXI slave interface
*/
input wire [ID_WIDTH-1:0] s_axi_awid,
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
input wire [7:0] s_axi_awlen,
input wire [2:0] s_axi_awsize,
input wire [1:0] s_axi_awburst,
input wire s_axi_awlock,
input wire [3:0] s_axi_awcache,
input wire [2:0] s_axi_awprot,
input wire [3:0] s_axi_awqos,
input wire [3:0] s_axi_awregion,
input wire [AWUSER_WIDTH-1:0] s_axi_awuser,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [DATA_WIDTH-1:0] s_axi_wdata,
input wire [STRB_WIDTH-1:0] s_axi_wstrb,
input wire s_axi_wlast,
input wire [WUSER_WIDTH-1:0] s_axi_wuser,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [ID_WIDTH-1:0] s_axi_bid,
output wire [1:0] s_axi_bresp,
output wire [BUSER_WIDTH-1:0] s_axi_buser,
output wire s_axi_bvalid,
input wire s_axi_bready,
/*
* AXI master interface
*/
output wire [ID_WIDTH-1:0] m_axi_awid,
output wire [ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire [3:0] m_axi_awqos,
output wire [3:0] m_axi_awregion,
output wire [AWUSER_WIDTH-1:0] m_axi_awuser,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [DATA_WIDTH-1:0] m_axi_wdata,
output wire [STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire [WUSER_WIDTH-1:0] m_axi_wuser,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire [BUSER_WIDTH-1:0] m_axi_buser,
input wire m_axi_bvalid,
output wire m_axi_bready
);
parameter STRB_OFFSET = DATA_WIDTH;
parameter LAST_OFFSET = STRB_OFFSET + STRB_WIDTH;
parameter WUSER_OFFSET = LAST_OFFSET + 1;
parameter WWIDTH = WUSER_OFFSET + (WUSER_ENABLE ? WUSER_WIDTH : 0);
parameter FIFO_ADDR_WIDTH = $clog2(FIFO_DEPTH);
reg [FIFO_ADDR_WIDTH:0] wr_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
reg [FIFO_ADDR_WIDTH:0] wr_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [FIFO_ADDR_WIDTH:0] rd_ptr_reg = {FIFO_ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [FIFO_ADDR_WIDTH:0] rd_addr_reg = {FIFO_ADDR_WIDTH+1{1'b0}};
reg [WWIDTH-1:0] mem[(2**FIFO_ADDR_WIDTH)-1:0];
reg [WWIDTH-1:0] mem_read_data_reg;
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [WWIDTH-1:0] s_axi_w;
reg [WWIDTH-1:0] m_axi_w_reg;
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
// full when first MSB different but rest same
wire full = ((wr_ptr_reg[FIFO_ADDR_WIDTH] != rd_ptr_reg[FIFO_ADDR_WIDTH]) &&
(wr_ptr_reg[FIFO_ADDR_WIDTH-1:0] == rd_ptr_reg[FIFO_ADDR_WIDTH-1:0]));
// empty when pointers match exactly
wire empty = wr_ptr_reg == rd_ptr_reg;
wire hold;
// control signals
reg write;
reg read;
reg store_output;
assign s_axi_wready = !full && !hold;
generate
assign s_axi_w[DATA_WIDTH-1:0] = s_axi_wdata;
assign s_axi_w[STRB_OFFSET +: STRB_WIDTH] = s_axi_wstrb;
assign s_axi_w[LAST_OFFSET] = s_axi_wlast;
if (WUSER_ENABLE) assign s_axi_w[WUSER_OFFSET +: WUSER_WIDTH] = s_axi_wuser;
endgenerate
generate
if (FIFO_DELAY) begin
// store AW channel value until W channel burst is stored in FIFO or FIFO is full
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_TRANSFER_IN = 2'd1,
STATE_TRANSFER_OUT = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg hold_reg = 1'b1, hold_next;
reg [8:0] count_reg = 9'd0, count_next;
reg [ID_WIDTH-1:0] m_axi_awid_reg = {ID_WIDTH{1'b0}}, m_axi_awid_next;
reg [ADDR_WIDTH-1:0] m_axi_awaddr_reg = {ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg [2:0] m_axi_awsize_reg = 3'd0, m_axi_awsize_next;
reg [1:0] m_axi_awburst_reg = 2'd0, m_axi_awburst_next;
reg m_axi_awlock_reg = 1'b0, m_axi_awlock_next;
reg [3:0] m_axi_awcache_reg = 4'd0, m_axi_awcache_next;
reg [2:0] m_axi_awprot_reg = 3'd0, m_axi_awprot_next;
reg [3:0] m_axi_awqos_reg = 4'd0, m_axi_awqos_next;
reg [3:0] m_axi_awregion_reg = 4'd0, m_axi_awregion_next;
reg [AWUSER_WIDTH-1:0] m_axi_awuser_reg = {AWUSER_WIDTH{1'b0}}, m_axi_awuser_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
assign m_axi_awid = m_axi_awid_reg;
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = m_axi_awsize_reg;
assign m_axi_awburst = m_axi_awburst_reg;
assign m_axi_awlock = m_axi_awlock_reg;
assign m_axi_awcache = m_axi_awcache_reg;
assign m_axi_awprot = m_axi_awprot_reg;
assign m_axi_awqos = m_axi_awqos_reg;
assign m_axi_awregion = m_axi_awregion_reg;
assign m_axi_awuser = AWUSER_ENABLE ? m_axi_awuser_reg : {AWUSER_WIDTH{1'b0}};
assign m_axi_awvalid = m_axi_awvalid_reg;
assign s_axi_awready = s_axi_awready_reg;
assign hold = hold_reg;
always @* begin
state_next = STATE_IDLE;
hold_next = hold_reg;
count_next = count_reg;
m_axi_awid_next = m_axi_awid_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awsize_next = m_axi_awsize_reg;
m_axi_awburst_next = m_axi_awburst_reg;
m_axi_awlock_next = m_axi_awlock_reg;
m_axi_awcache_next = m_axi_awcache_reg;
m_axi_awprot_next = m_axi_awprot_reg;
m_axi_awqos_next = m_axi_awqos_reg;
m_axi_awregion_next = m_axi_awregion_reg;
m_axi_awuser_next = m_axi_awuser_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
s_axi_awready_next = s_axi_awready_reg;
case (state_reg)
STATE_IDLE: begin
s_axi_awready_next = !m_axi_awvalid;
hold_next = 1'b1;
if (s_axi_awready & s_axi_awvalid) begin
s_axi_awready_next = 1'b0;
m_axi_awid_next = s_axi_awid;
m_axi_awaddr_next = s_axi_awaddr;
m_axi_awlen_next = s_axi_awlen;
m_axi_awsize_next = s_axi_awsize;
m_axi_awburst_next = s_axi_awburst;
m_axi_awlock_next = s_axi_awlock;
m_axi_awcache_next = s_axi_awcache;
m_axi_awprot_next = s_axi_awprot;
m_axi_awqos_next = s_axi_awqos;
m_axi_awregion_next = s_axi_awregion;
m_axi_awuser_next = s_axi_awuser;
hold_next = 1'b0;
count_next = 0;
state_next = STATE_TRANSFER_IN;
end else begin
state_next = STATE_IDLE;
end
end
STATE_TRANSFER_IN: begin
s_axi_awready_next = 1'b0;
hold_next = 1'b0;
if (s_axi_wready & s_axi_wvalid) begin
count_next = count_reg + 1;
if (count_next == 2**FIFO_ADDR_WIDTH) begin
m_axi_awvalid_next = 1'b1;
state_next = STATE_TRANSFER_OUT;
end else if (count_reg == m_axi_awlen) begin
m_axi_awvalid_next = 1'b1;
hold_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_TRANSFER_IN;
end
end else begin
state_next = STATE_TRANSFER_IN;
end
end
STATE_TRANSFER_OUT: begin
s_axi_awready_next = 1'b0;
hold_next = 1'b0;
if (s_axi_wready & s_axi_wvalid) begin
count_next = count_reg + 1;
if (count_reg == m_axi_awlen) begin
hold_next = 1'b1;
state_next = STATE_IDLE;
end else begin
state_next = STATE_TRANSFER_OUT;
end
end else begin
state_next = STATE_TRANSFER_OUT;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
state_reg <= STATE_IDLE;
hold_reg <= 1'b1;
m_axi_awvalid_reg <= 1'b0;
s_axi_awready_reg <= 1'b0;
end else begin
state_reg <= state_next;
hold_reg <= hold_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
s_axi_awready_reg <= s_axi_awready_next;
end
count_reg <= count_next;
m_axi_awid_reg <= m_axi_awid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awsize_reg <= m_axi_awsize_next;
m_axi_awburst_reg <= m_axi_awburst_next;
m_axi_awlock_reg <= m_axi_awlock_next;
m_axi_awcache_reg <= m_axi_awcache_next;
m_axi_awprot_reg <= m_axi_awprot_next;
m_axi_awqos_reg <= m_axi_awqos_next;
m_axi_awregion_reg <= m_axi_awregion_next;
m_axi_awuser_reg <= m_axi_awuser_next;
end
end else begin
// bypass AW channel
assign m_axi_awid = s_axi_awid;
assign m_axi_awaddr = s_axi_awaddr;
assign m_axi_awlen = s_axi_awlen;
assign m_axi_awsize = s_axi_awsize;
assign m_axi_awburst = s_axi_awburst;
assign m_axi_awlock = s_axi_awlock;
assign m_axi_awcache = s_axi_awcache;
assign m_axi_awprot = s_axi_awprot;
assign m_axi_awqos = s_axi_awqos;
assign m_axi_awregion = s_axi_awregion;
assign m_axi_awuser = AWUSER_ENABLE ? s_axi_awuser : {AWUSER_WIDTH{1'b0}};
assign m_axi_awvalid = s_axi_awvalid;
assign s_axi_awready = m_axi_awready;
assign hold = 1'b0;
end
endgenerate
// bypass B channel
assign s_axi_bid = m_axi_bid;
assign s_axi_bresp = m_axi_bresp;
assign s_axi_buser = BUSER_ENABLE ? m_axi_buser : {BUSER_WIDTH{1'b0}};
assign s_axi_bvalid = m_axi_bvalid;
assign m_axi_bready = s_axi_bready;
assign m_axi_wvalid = m_axi_wvalid_reg;
assign m_axi_wdata = m_axi_w_reg[DATA_WIDTH-1:0];
assign m_axi_wstrb = m_axi_w_reg[STRB_OFFSET +: STRB_WIDTH];
assign m_axi_wlast = m_axi_w_reg[LAST_OFFSET];
assign m_axi_wuser = WUSER_ENABLE ? m_axi_w_reg[WUSER_OFFSET +: WUSER_WIDTH] : {WUSER_WIDTH{1'b0}};
// Write logic
always @* begin
write = 1'b0;
wr_ptr_next = wr_ptr_reg;
if (s_axi_wvalid) begin
// input data valid
if (!full && !hold) begin
// not full, perform write
write = 1'b1;
wr_ptr_next = wr_ptr_reg + 1;
end
end
end
always @(posedge clk) begin
if (rst) begin
wr_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
end else begin
wr_ptr_reg <= wr_ptr_next;
end
wr_addr_reg <= wr_ptr_next;
if (write) begin
mem[wr_addr_reg[FIFO_ADDR_WIDTH-1:0]] <= s_axi_w;
end
end
// Read logic
always @* begin
read = 1'b0;
rd_ptr_next = rd_ptr_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (store_output || !mem_read_data_valid_reg) begin
// output data not valid OR currently being transferred
if (!empty) begin
// not empty, perform read
read = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
always @(posedge clk) begin
if (rst) begin
rd_ptr_reg <= {FIFO_ADDR_WIDTH+1{1'b0}};
mem_read_data_valid_reg <= 1'b0;
end else begin
rd_ptr_reg <= rd_ptr_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
end
rd_addr_reg <= rd_ptr_next;
if (read) begin
mem_read_data_reg <= mem[rd_addr_reg[FIFO_ADDR_WIDTH-1:0]];
end
end
// Output register
always @* begin
store_output = 1'b0;
m_axi_wvalid_next = m_axi_wvalid_reg;
if (m_axi_wready || !m_axi_wvalid) begin
store_output = 1'b1;
m_axi_wvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
end
if (store_output) begin
m_axi_w_reg <= mem_read_data_reg;
end
end
endmodule