1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/pcie_us_axi_dma_wr.v
2019-10-04 16:29:11 -07:00

933 lines
40 KiB
Verilog

/*
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* Ultrascale PCIe AXI DMA Write
*/
module pcie_us_axi_dma_wr #
(
// Width of PCIe AXI stream interfaces in bits
parameter AXIS_PCIE_DATA_WIDTH = 256,
// PCIe AXI stream tkeep signal width (words per cycle)
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
// PCIe AXI stream RQ tuser signal width
parameter AXIS_PCIE_RQ_USER_WIDTH = 60,
// Width of AXI data bus in bits
parameter AXI_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH,
// Width of AXI address bus in bits
parameter AXI_ADDR_WIDTH = 64,
// Width of AXI wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Maximum AXI burst length to generate
parameter AXI_MAX_BURST_LEN = 256,
// PCIe address width
parameter PCIE_ADDR_WIDTH = 64,
// Length field width
parameter LEN_WIDTH = 20,
// Tag field width
parameter TAG_WIDTH = 8
)
(
input wire clk,
input wire rst,
/*
* AXI input (RQ from read DMA)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rq_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rq_tkeep,
input wire s_axis_rq_tvalid,
output wire s_axis_rq_tready,
input wire s_axis_rq_tlast,
input wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] s_axis_rq_tuser,
/*
* AXI output (RQ)
*/
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata,
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep,
output wire m_axis_rq_tvalid,
input wire m_axis_rq_tready,
output wire m_axis_rq_tlast,
output wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser,
/*
* AXI write descriptor input
*/
input wire [PCIE_ADDR_WIDTH-1:0] s_axis_write_desc_pcie_addr,
input wire [AXI_ADDR_WIDTH-1:0] s_axis_write_desc_axi_addr,
input wire [LEN_WIDTH-1:0] s_axis_write_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_write_desc_tag,
input wire s_axis_write_desc_valid,
output wire s_axis_write_desc_ready,
/*
* AXI write descriptor status output
*/
output wire [TAG_WIDTH-1:0] m_axis_write_desc_status_tag,
output wire m_axis_write_desc_status_valid,
/*
* AXI master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire m_axi_rvalid,
output wire m_axi_rready,
/*
* Configuration
*/
input wire enable,
input wire [15:0] requester_id,
input wire requester_id_enable,
input wire [2:0] max_payload_size
);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
parameter OFFSET_WIDTH = $clog2(AXI_DATA_WIDTH/8);
parameter WORD_LEN_WIDTH = LEN_WIDTH - $clog2(AXIS_PCIE_KEEP_WIDTH);
parameter CYCLE_COUNT_WIDTH = 13-AXI_BURST_SIZE;
parameter TLP_CMD_FIFO_ADDR_WIDTH = 3;
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256) begin
$error("Error: PCIe interface width must be 64, 128, or 256 (instance %m)");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
if (AXIS_PCIE_RQ_USER_WIDTH != 60 && AXIS_PCIE_RQ_USER_WIDTH != 62) begin
$error("Error: PCIe RQ tuser width must be 60 or 62 (instance %m)");
$finish;
end
if (AXI_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: AXI interface width must match PCIe interface width (instance %m)");
$finish;
end
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
$error("Error: AXI interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)");
$finish;
end
end
localparam [3:0]
REQ_MEM_READ = 4'b0000,
REQ_MEM_WRITE = 4'b0001,
REQ_IO_READ = 4'b0010,
REQ_IO_WRITE = 4'b0011,
REQ_MEM_FETCH_ADD = 4'b0100,
REQ_MEM_SWAP = 4'b0101,
REQ_MEM_CAS = 4'b0110,
REQ_MEM_READ_LOCKED = 4'b0111,
REQ_CFG_READ_0 = 4'b1000,
REQ_CFG_READ_1 = 4'b1001,
REQ_CFG_WRITE_0 = 4'b1010,
REQ_CFG_WRITE_1 = 4'b1011,
REQ_MSG = 4'b1100,
REQ_MSG_VENDOR = 4'b1101,
REQ_MSG_ATS = 4'b1110;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [1:0]
AXI_STATE_IDLE = 2'd0,
AXI_STATE_START = 2'd1,
AXI_STATE_REQ = 2'd2;
reg [1:0] axi_state_reg = AXI_STATE_IDLE, axi_state_next;
localparam [2:0]
TLP_STATE_IDLE = 3'd0,
TLP_STATE_HEADER_1 = 3'd1,
TLP_STATE_HEADER_2 = 3'd2,
TLP_STATE_TRANSFER = 3'd3,
TLP_STATE_PASSTHROUGH = 3'd4;
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
// datapath control signals
reg transfer_in_save;
reg tlp_cmd_ready;
reg [PCIE_ADDR_WIDTH-1:0] pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, pcie_addr_next;
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
reg [LEN_WIDTH-1:0] op_count_reg = {LEN_WIDTH{1'b0}}, op_count_next;
reg [LEN_WIDTH-1:0] tr_count_reg = {LEN_WIDTH{1'b0}}, tr_count_next;
reg [LEN_WIDTH-1:0] tlp_count_reg = {LEN_WIDTH{1'b0}}, tlp_count_next;
reg [PCIE_ADDR_WIDTH-1:0] tlp_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_addr_next;
reg [11:0] tlp_len_reg = 12'd0, tlp_len_next;
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
reg [9:0] dword_count_reg = 10'd0, dword_count_next;
reg [CYCLE_COUNT_WIDTH-1:0] input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, input_cycle_count_next;
reg [CYCLE_COUNT_WIDTH-1:0] output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, output_cycle_count_next;
reg input_active_reg = 1'b0, input_active_next;
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg last_tlp_reg = 1'b0, last_tlp_next;
reg [TAG_WIDTH-1:0] tag_reg = {TAG_WIDTH{1'b0}}, tag_next;
reg [PCIE_ADDR_WIDTH-1:0] tlp_cmd_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, tlp_cmd_addr_next;
reg [11:0] tlp_cmd_len_reg = 12'd0, tlp_cmd_len_next;
reg [9:0] tlp_cmd_dword_len_reg = 10'd0, tlp_cmd_dword_len_next;
reg [CYCLE_COUNT_WIDTH-1:0] tlp_cmd_input_cycle_len_reg = {CYCLE_COUNT_WIDTH{1'b0}}, tlp_cmd_input_cycle_len_next;
reg [CYCLE_COUNT_WIDTH-1:0] tlp_cmd_output_cycle_len_reg = {CYCLE_COUNT_WIDTH{1'b0}}, tlp_cmd_output_cycle_len_next;
reg [OFFSET_WIDTH-1:0] tlp_cmd_offset_reg = {OFFSET_WIDTH{1'b0}}, tlp_cmd_offset_next;
reg [TAG_WIDTH-1:0] tlp_cmd_tag_reg = {TAG_WIDTH{1'b0}}, tlp_cmd_tag_next;
reg tlp_cmd_bubble_cycle_reg = 1'b0, tlp_cmd_bubble_cycle_next;
reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next;
reg tlp_cmd_valid_reg = 1'b0, tlp_cmd_valid_next;
reg [10:0] max_payload_size_dw_reg = 11'd0;
reg s_axis_rq_tready_reg = 1'b0, s_axis_rq_tready_next;
reg s_axis_write_desc_ready_reg = 1'b0, s_axis_write_desc_ready_next;
reg [TAG_WIDTH-1:0] m_axis_write_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_write_desc_status_tag_next;
reg m_axis_write_desc_status_valid_reg = 1'b0, m_axis_write_desc_status_valid_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_araddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
reg [AXI_DATA_WIDTH-1:0] save_axi_rdata_reg = {AXI_DATA_WIDTH{1'b0}};
wire [AXI_DATA_WIDTH-1:0] shift_axi_rdata = {m_axi_rdata, save_axi_rdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE);
// internal datapath
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int;
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int;
reg m_axis_rq_tvalid_int;
reg m_axis_rq_tready_int_reg = 1'b0;
reg m_axis_rq_tlast_int;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_int;
wire m_axis_rq_tready_int_early;
assign s_axis_rq_tready = s_axis_rq_tready_reg;
assign s_axis_write_desc_ready = s_axis_write_desc_ready_reg;
assign m_axis_write_desc_status_tag = m_axis_write_desc_status_tag_reg;
assign m_axis_write_desc_status_valid = m_axis_write_desc_status_valid_reg;
assign m_axi_arid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = AXI_BURST_SIZE;
assign m_axi_arburst = 2'b01;
assign m_axi_arlock = 1'b0;
assign m_axi_arcache = 4'b0011;
assign m_axi_arprot = 3'b010;
assign m_axi_arvalid = m_axi_arvalid_reg;
assign m_axi_rready = m_axi_rready_reg;
wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_max_payload = pcie_addr_reg + {max_payload_size_dw_reg, 2'b00};
wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_op_count = pcie_addr_reg + op_count_reg;
wire [PCIE_ADDR_WIDTH-1:0] pcie_addr_plus_tlp_count = pcie_addr_reg + tlp_count_reg;
wire [AXI_ADDR_WIDTH-1:0] axi_addr_plus_max_burst = axi_addr_reg + AXI_MAX_BURST_SIZE;
wire [AXI_ADDR_WIDTH-1:0] axi_addr_plus_op_count = axi_addr_reg + op_count_reg;
wire [AXI_ADDR_WIDTH-1:0] axi_addr_plus_tlp_count = axi_addr_reg + tlp_count_reg;
always @* begin
axi_state_next = AXI_STATE_IDLE;
s_axis_write_desc_ready_next = 1'b0;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
pcie_addr_next = pcie_addr_reg;
axi_addr_next = axi_addr_reg;
op_count_next = op_count_reg;
tr_count_next = tr_count_reg;
tlp_count_next = tlp_count_reg;
tlp_cmd_addr_next = tlp_cmd_addr_reg;
tlp_cmd_len_next = tlp_cmd_len_reg;
tlp_cmd_dword_len_next = tlp_cmd_dword_len_reg;
tlp_cmd_input_cycle_len_next = tlp_cmd_input_cycle_len_reg;
tlp_cmd_output_cycle_len_next = tlp_cmd_output_cycle_len_reg;
tlp_cmd_offset_next = tlp_cmd_offset_reg;
tlp_cmd_tag_next = tlp_cmd_tag_reg;
tlp_cmd_bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
tlp_cmd_last_next = tlp_cmd_last_reg;
tlp_cmd_valid_next = tlp_cmd_valid_reg && !tlp_cmd_ready;
// TLP segmentation and AXI read request generation
case (axi_state_reg)
AXI_STATE_IDLE: begin
// idle state, wait for incoming descriptor
s_axis_write_desc_ready_next = !tlp_cmd_valid_reg && enable;
if (s_axis_write_desc_ready & s_axis_write_desc_valid) begin
s_axis_write_desc_ready_next = 1'b0;
pcie_addr_next = s_axis_write_desc_pcie_addr;
axi_addr_next = s_axis_write_desc_axi_addr;
op_count_next = s_axis_write_desc_len;
tlp_cmd_tag_next = s_axis_write_desc_tag;
axi_state_next = AXI_STATE_START;
end else begin
axi_state_next = AXI_STATE_IDLE;
end
end
AXI_STATE_START: begin
// start state, compute TLP length
if (!tlp_cmd_valid_reg) begin
if (op_count_reg <= {max_payload_size_dw_reg, 2'b00}-pcie_addr_reg[1:0]) begin
// packet smaller than max payload size
if (pcie_addr_reg[12] != pcie_addr_plus_op_count[12]) begin
// crosses 4k boundary
tlp_count_next = 13'h1000 - pcie_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one TLP
tlp_count_next = op_count_reg;
end
end else begin
// packet larger than max payload size
if (pcie_addr_reg[12] != pcie_addr_plus_max_payload[12]) begin
// crosses 4k boundary
tlp_count_next = 13'h1000 - pcie_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one TLP
tlp_count_next = {max_payload_size_dw_reg, 2'b00}-pcie_addr_reg[1:0];
end
end
tlp_cmd_input_cycle_len_next = (tlp_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> AXI_BURST_SIZE;
if (AXIS_PCIE_DATA_WIDTH == 256) begin
tlp_cmd_output_cycle_len_next = (tlp_count_next + 16+pcie_addr_reg[1:0] - 1) >> AXI_BURST_SIZE;
end else begin
tlp_cmd_output_cycle_len_next = (tlp_count_next + pcie_addr_reg[1:0] - 1) >> AXI_BURST_SIZE;
end
pcie_addr_next = pcie_addr_reg + tlp_count_next;
op_count_next = op_count_reg - tlp_count_next;
tlp_cmd_addr_next = pcie_addr_reg;
tlp_cmd_len_next = tlp_count_next;
tlp_cmd_dword_len_next = (tlp_count_next + pcie_addr_reg[1:0] + 3) >> 2;
if (AXIS_PCIE_DATA_WIDTH == 256) begin
tlp_cmd_offset_next = 16+pcie_addr_reg[1:0]-axi_addr_reg[OFFSET_WIDTH-1:0];
tlp_cmd_bubble_cycle_next = axi_addr_reg[OFFSET_WIDTH-1:0] > 16+pcie_addr_reg[1:0];
end else begin
tlp_cmd_offset_next = pcie_addr_reg[1:0]-axi_addr_reg[OFFSET_WIDTH-1:0];
tlp_cmd_bubble_cycle_next = axi_addr_reg[OFFSET_WIDTH-1:0] > pcie_addr_reg[1:0];
end
tlp_cmd_last_next = op_count_next == 0;
tlp_cmd_valid_next = 1'b1;
axi_state_next = AXI_STATE_REQ;
end else begin
axi_state_next = AXI_STATE_START;
end
end
AXI_STATE_REQ: begin
// request state, generate AXI read requests
if (!m_axi_arvalid) begin
if (tlp_count_reg <= AXI_MAX_BURST_SIZE-axi_addr_reg[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
// packet smaller than max burst size
if (axi_addr_reg[12] != axi_addr_plus_tlp_count[12]) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = tlp_count_reg;
end
end else begin
// packet larger than max burst size
if (axi_addr_reg[12] != axi_addr_plus_max_burst[12]) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_reg[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_reg[OFFSET_WIDTH-1:0];
end
end
m_axi_araddr_next = axi_addr_reg;
m_axi_arlen_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> AXI_BURST_SIZE;
m_axi_arvalid_next = 1;
axi_addr_next = axi_addr_reg + tr_count_next;
tlp_count_next = tlp_count_reg - tr_count_next;
if (tlp_count_next != 0) begin
axi_state_next = AXI_STATE_REQ;
end else if (op_count_next != 0) begin
axi_state_next = AXI_STATE_START;
end else begin
s_axis_write_desc_ready_next = !tlp_cmd_valid_reg && enable;
axi_state_next = AXI_STATE_IDLE;
end
end else begin
axi_state_next = AXI_STATE_REQ;
end
end
endcase
end
wire [3:0] first_be = 4'b1111 << tlp_addr_reg[1:0];
wire [3:0] last_be = 4'b1111 >> (3 - ((tlp_addr_reg[1:0] + tlp_len_reg[1:0] - 1) & 3));
always @* begin
tlp_state_next = TLP_STATE_IDLE;
transfer_in_save = 1'b0;
tlp_cmd_ready = 1'b0;
s_axis_rq_tready_next = 1'b0;
m_axis_write_desc_status_tag_next = m_axis_write_desc_status_tag_reg;
m_axis_write_desc_status_valid_next = 1'b0;
m_axi_rready_next = 1'b0;
tlp_addr_next = tlp_addr_reg;
tlp_len_next = tlp_len_reg;
dword_count_next = dword_count_reg;
offset_next = offset_reg;
input_cycle_count_next = input_cycle_count_reg;
output_cycle_count_next = output_cycle_count_reg;
input_active_next = input_active_reg;
bubble_cycle_next = bubble_cycle_reg;
last_cycle_next = last_cycle_reg;
last_tlp_next = last_tlp_reg;
tag_next = tag_reg;
m_axis_rq_tdata_int = {AXIS_PCIE_DATA_WIDTH{1'b0}};
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
m_axis_rq_tvalid_int = 1'b0;
m_axis_rq_tlast_int = 1'b0;
m_axis_rq_tuser_int = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
m_axis_rq_tdata_int[1:0] = 2'b0; // address type
m_axis_rq_tdata_int[63:2] = tlp_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address
if (AXIS_PCIE_DATA_WIDTH > 64) begin
m_axis_rq_tdata_int[74:64] = dword_count_reg; // DWORD count
m_axis_rq_tdata_int[78:75] = REQ_MEM_WRITE; // request type - memory write
m_axis_rq_tdata_int[79] = 1'b0; // poisoned request
m_axis_rq_tdata_int[95:80] = requester_id;
m_axis_rq_tdata_int[103:96] = 8'd0; // tag
m_axis_rq_tdata_int[119:104] = 16'd0; // completer ID
m_axis_rq_tdata_int[120] = requester_id_enable; // requester ID enable
m_axis_rq_tdata_int[123:121] = 3'b000; // traffic class
m_axis_rq_tdata_int[126:124] = 3'b000; // attr
m_axis_rq_tdata_int[127] = 1'b0; // force ECRC
end
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_rq_tkeep_int = 8'b00001111;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_rq_tkeep_int = 4'b1111;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_rq_tkeep_int = 2'b11;
end
m_axis_rq_tuser_int[3:0] = dword_count_reg == 1 ? first_be & last_be : first_be; // first BE
m_axis_rq_tuser_int[7:4] = dword_count_reg == 1 ? 4'b0000 : last_be; // last BE
m_axis_rq_tuser_int[10:8] = 3'd0; // addr_offset
m_axis_rq_tuser_int[11] = 1'b0; // discontinue
m_axis_rq_tuser_int[12] = 1'b0; // tph_present
m_axis_rq_tuser_int[14:13] = 2'b00; // tph_type
m_axis_rq_tuser_int[15] = 1'b0; // tph_indirect_tag_en
m_axis_rq_tuser_int[23:16] = 8'd0; // tph_st_tag
m_axis_rq_tuser_int[27:24] = 4'd0; // seq_num
m_axis_rq_tuser_int[59:28] = 32'd0; // parity
// AXI read response processing and TLP generation
case (tlp_state_reg)
TLP_STATE_IDLE: begin
// idle state, wait for command
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
// pass through read request TLP
m_axis_rq_tdata_int = s_axis_rq_tdata;
m_axis_rq_tkeep_int = s_axis_rq_tkeep;
m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid;
m_axis_rq_tlast_int = s_axis_rq_tlast;
m_axis_rq_tuser_int = s_axis_rq_tuser;
m_axi_rready_next = 1'b0;
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
tag_next = tlp_cmd_tag_reg;
if (s_axis_rq_tready && s_axis_rq_tvalid) begin
// pass through read request TLP
if (s_axis_rq_tlast) begin
tlp_state_next = TLP_STATE_IDLE;
end else begin
tlp_state_next = TLP_STATE_PASSTHROUGH;
end
end else if (tlp_cmd_valid_reg) begin
s_axis_rq_tready_next = 1'b0;
tlp_cmd_ready = 1'b1;
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axi_rready_next = m_axis_rq_tready_int_early;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axi_rready_next = m_axis_rq_tready_int_early && bubble_cycle_next;
end else begin
m_axi_rready_next = 1'b0;
end
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
tlp_state_next = TLP_STATE_IDLE;
end
end
TLP_STATE_HEADER_1: begin
// header 1 state, send TLP header
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_reg;
if (m_axis_rq_tready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
transfer_in_save = m_axi_rready && m_axi_rvalid;
if (bubble_cycle_reg) begin
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg != 0;
end
bubble_cycle_next = 1'b0;
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
dword_count_next = dword_count_reg - 4;
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg != 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
m_axis_rq_tdata_int[255:128] = shift_axi_rdata[255:128];
m_axis_rq_tvalid_int = 1'b1;
if (dword_count_reg >= 4) begin
m_axis_rq_tkeep_int = 8'b11111111;
end else begin
m_axis_rq_tkeep_int = 8'b11111111 >> (4 - dword_count_reg);
end
if (last_cycle_reg) begin
m_axis_rq_tlast_int = 1'b1;
if (last_tlp_reg) begin
m_axis_write_desc_status_tag_next = tag_reg;
m_axis_write_desc_status_valid_next = 1'b1;
end
// skip idle state if possible
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
tag_next = tlp_cmd_tag_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axi_rready_next = m_axis_rq_tready_int_early;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axi_rready_next = m_axis_rq_tready_int_early && bubble_cycle_next;
end else begin
m_axi_rready_next = 1'b0;
end
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
m_axi_rready_next = 0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end
end
end else begin
tlp_state_next = TLP_STATE_HEADER_1;
end
end else begin
if (m_axis_rq_tready_int_reg) begin
m_axis_rq_tvalid_int = 1'b1;
if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axi_rready_next = m_axis_rq_tready_int_early;
if ((m_axi_rready && m_axi_rvalid) && bubble_cycle_reg) begin
transfer_in_save = 1'b1;
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg != 0;
end
bubble_cycle_next = 1'b0;
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_next;
end
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
m_axi_rready_next = m_axis_rq_tready_int_early && bubble_cycle_reg;
tlp_state_next = TLP_STATE_HEADER_2;
end
end else begin
tlp_state_next = TLP_STATE_HEADER_1;
end
end
end
TLP_STATE_HEADER_2: begin
// header 2 state, send rest of TLP header (64 bit interface only)
if (m_axis_rq_tready_int_reg) begin
m_axis_rq_tdata_int[10:0] = dword_count_reg; // DWORD count
m_axis_rq_tdata_int[14:11] = 4'b0001; // request type - memory write
m_axis_rq_tdata_int[15] = 1'b0; // poisoned request
m_axis_rq_tdata_int[31:16] = requester_id;
m_axis_rq_tdata_int[39:32] = 8'd0; // tag
m_axis_rq_tdata_int[55:40] = 16'd0; // completer ID
m_axis_rq_tdata_int[56] = requester_id_enable; // requester ID enable
m_axis_rq_tdata_int[59:57] = 3'b000; // traffic class
m_axis_rq_tdata_int[62:60] = 3'b000; // attr
m_axis_rq_tdata_int[63] = 1'b0; // force ECRC
m_axis_rq_tvalid_int = 1'b1;
m_axis_rq_tkeep_int = 2'b11;
m_axi_rready_next = m_axis_rq_tready_int_early;
if ((m_axi_rready && m_axi_rvalid) && bubble_cycle_reg) begin
transfer_in_save = 1'b1;
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg != 0;
end
bubble_cycle_next = 1'b0;
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_next;
end
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
tlp_state_next = TLP_STATE_HEADER_2;
end
end
TLP_STATE_TRANSFER: begin
// transfer state, transfer data
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_reg;
if (m_axis_rq_tready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
transfer_in_save = 1'b1;
if (bubble_cycle_reg) begin
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg != 0;
end
bubble_cycle_next = 1'b0;
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
dword_count_next = dword_count_reg - AXIS_PCIE_KEEP_WIDTH;
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg != 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
m_axis_rq_tdata_int = shift_axi_rdata;
m_axis_rq_tvalid_int = 1'b1;
if (dword_count_reg >= AXIS_PCIE_KEEP_WIDTH) begin
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}};
end else begin
m_axis_rq_tkeep_int = {AXIS_PCIE_KEEP_WIDTH{1'b1}} >> (AXIS_PCIE_KEEP_WIDTH - dword_count_reg);
end
if (last_cycle_reg) begin
m_axis_rq_tlast_int = 1'b1;
if (last_tlp_reg) begin
m_axis_write_desc_status_tag_next = tag_reg;
m_axis_write_desc_status_valid_next = 1'b1;
end
// skip idle state if possible
tlp_addr_next = tlp_cmd_addr_reg;
tlp_len_next = tlp_cmd_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
tag_next = tlp_cmd_tag_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axi_rready_next = m_axis_rq_tready_int_early;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axi_rready_next = m_axis_rq_tready_int_early && bubble_cycle_next;
end else begin
m_axi_rready_next = 1'b0;
end
tlp_state_next = TLP_STATE_HEADER_1;
end else begin
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
m_axi_rready_next = 0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
m_axi_rready_next = m_axis_rq_tready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end
TLP_STATE_PASSTHROUGH: begin
// passthrough state, pass through read request TLP
s_axis_rq_tready_next = m_axis_rq_tready_int_early;
// pass through read request TLP
m_axis_rq_tdata_int = s_axis_rq_tdata;
m_axis_rq_tkeep_int = s_axis_rq_tkeep;
m_axis_rq_tvalid_int = s_axis_rq_tready && s_axis_rq_tvalid;
m_axis_rq_tlast_int = s_axis_rq_tlast;
m_axis_rq_tuser_int = s_axis_rq_tuser;
if (s_axis_rq_tready && s_axis_rq_tvalid && s_axis_rq_tlast) begin
tlp_state_next = TLP_STATE_IDLE;
end else begin
tlp_state_next = TLP_STATE_PASSTHROUGH;
end
end
endcase
end
always @(posedge clk) begin
if (rst) begin
axi_state_reg <= AXI_STATE_IDLE;
tlp_state_reg <= TLP_STATE_IDLE;
tlp_cmd_valid_reg <= 1'b0;
s_axis_rq_tready_reg <= 1'b0;
s_axis_write_desc_ready_reg <= 1'b0;
m_axis_write_desc_status_valid_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
end else begin
axi_state_reg <= axi_state_next;
tlp_state_reg <= tlp_state_next;
tlp_cmd_valid_reg <= tlp_cmd_valid_next;
s_axis_rq_tready_reg <= s_axis_rq_tready_next;
s_axis_write_desc_ready_reg <= s_axis_write_desc_ready_next;
m_axis_write_desc_status_valid_reg <= m_axis_write_desc_status_valid_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
end
pcie_addr_reg <= pcie_addr_next;
axi_addr_reg <= axi_addr_next;
op_count_reg <= op_count_next;
tr_count_reg <= tr_count_next;
tlp_count_reg <= tlp_count_next;
tlp_addr_reg <= tlp_addr_next;
tlp_len_reg <= tlp_len_next;
dword_count_reg <= dword_count_next;
offset_reg <= offset_next;
input_cycle_count_reg <= input_cycle_count_next;
output_cycle_count_reg <= output_cycle_count_next;
input_active_reg <= input_active_next;
bubble_cycle_reg <= bubble_cycle_next;
last_cycle_reg <= last_cycle_next;
last_tlp_reg <= last_tlp_next;
tag_reg <= tag_next;
tlp_cmd_addr_reg <= tlp_cmd_addr_next;
tlp_cmd_len_reg <= tlp_cmd_len_next;
tlp_cmd_dword_len_reg <= tlp_cmd_dword_len_next;
tlp_cmd_input_cycle_len_reg <= tlp_cmd_input_cycle_len_next;
tlp_cmd_output_cycle_len_reg <= tlp_cmd_output_cycle_len_next;
tlp_cmd_offset_reg <= tlp_cmd_offset_next;
tlp_cmd_bubble_cycle_reg <= tlp_cmd_bubble_cycle_next;
tlp_cmd_tag_reg <= tlp_cmd_tag_next;
tlp_cmd_last_reg <= tlp_cmd_last_next;
m_axis_write_desc_status_tag_reg <= m_axis_write_desc_status_tag_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
max_payload_size_dw_reg <= 11'd32 << (max_payload_size > 5 ? 5 : max_payload_size);
if (transfer_in_save) begin
save_axi_rdata_reg <= m_axi_rdata;
end
end
// output datapath logic (PCIe TLP)
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next;
reg m_axis_rq_tlast_reg = 1'b0;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next;
reg temp_m_axis_rq_tlast_reg = 1'b0;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] temp_m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
// datapath control
reg store_axis_rq_int_to_output;
reg store_axis_rq_int_to_temp;
reg store_axis_rq_temp_to_output;
assign m_axis_rq_tdata = m_axis_rq_tdata_reg;
assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg;
assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg;
assign m_axis_rq_tlast = m_axis_rq_tlast_reg;
assign m_axis_rq_tuser = m_axis_rq_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
store_axis_rq_int_to_output = 1'b0;
store_axis_rq_int_to_temp = 1'b0;
store_axis_rq_temp_to_output = 1'b0;
if (m_axis_rq_tready_int_reg) begin
// input is ready
if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_temp = 1'b1;
end
end else if (m_axis_rq_tready) begin
// input is not ready, but output is ready
m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = 1'b0;
store_axis_rq_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_rq_tvalid_reg <= 1'b0;
m_axis_rq_tready_int_reg <= 1'b0;
temp_m_axis_rq_tvalid_reg <= 1'b0;
end else begin
m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next;
m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early;
temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next;
end
// datapath
if (store_axis_rq_int_to_output) begin
m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end else if (store_axis_rq_temp_to_output) begin
m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg;
m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg;
m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg;
m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg;
end
if (store_axis_rq_int_to_temp) begin
temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end
end
endmodule