1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/eth_axis_tx.v
Alex Forencich 9dafc3aaee Use internal BYTE_LANES parameter
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2023-07-06 16:28:08 -07:00

410 lines
15 KiB
Verilog

/*
Copyright (c) 2014-2020 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream ethernet frame transmitter (Ethernet frame in, AXI out)
*/
module eth_axis_tx #
(
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8)
)
(
input wire clk,
input wire rst,
/*
* Ethernet frame input
*/
input wire s_eth_hdr_valid,
output wire s_eth_hdr_ready,
input wire [47:0] s_eth_dest_mac,
input wire [47:0] s_eth_src_mac,
input wire [15:0] s_eth_type,
input wire [DATA_WIDTH-1:0] s_eth_payload_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_eth_payload_axis_tkeep,
input wire s_eth_payload_axis_tvalid,
output wire s_eth_payload_axis_tready,
input wire s_eth_payload_axis_tlast,
input wire s_eth_payload_axis_tuser,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser,
/*
* Status signals
*/
output wire busy
);
parameter BYTE_LANES = KEEP_ENABLE ? KEEP_WIDTH : 1;
parameter HDR_SIZE = 14;
parameter CYCLE_COUNT = (HDR_SIZE+BYTE_LANES-1)/BYTE_LANES;
parameter PTR_WIDTH = $clog2(CYCLE_COUNT);
parameter OFFSET = HDR_SIZE % BYTE_LANES;
// bus width assertions
initial begin
if (BYTE_LANES * 8 != DATA_WIDTH) begin
$error("Error: AXI stream interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
end
/*
Ethernet frame
Field Length
Destination MAC address 6 octets
Source MAC address 6 octets
Ethertype 2 octets
This module receives an Ethernet frame with header fields in parallel along
with the payload in an AXI stream, combines the header with the payload, and
transmits the complete Ethernet frame on the output AXI stream interface.
*/
// datapath control signals
reg store_eth_hdr;
reg send_eth_header_reg = 1'b0, send_eth_header_next;
reg send_eth_payload_reg = 1'b0, send_eth_payload_next;
reg [PTR_WIDTH-1:0] ptr_reg = 0, ptr_next;
reg flush_save;
reg transfer_in_save;
reg [47:0] eth_dest_mac_reg = 48'd0;
reg [47:0] eth_src_mac_reg = 48'd0;
reg [15:0] eth_type_reg = 16'd0;
reg s_eth_hdr_ready_reg = 1'b0, s_eth_hdr_ready_next;
reg s_eth_payload_axis_tready_reg = 1'b0, s_eth_payload_axis_tready_next;
reg busy_reg = 1'b0;
reg [DATA_WIDTH-1:0] save_eth_payload_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] save_eth_payload_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg save_eth_payload_axis_tlast_reg = 1'b0;
reg save_eth_payload_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] shift_eth_payload_axis_tdata;
reg [KEEP_WIDTH-1:0] shift_eth_payload_axis_tkeep;
reg shift_eth_payload_axis_tvalid;
reg shift_eth_payload_axis_tlast;
reg shift_eth_payload_axis_tuser;
reg shift_eth_payload_axis_input_tready;
reg shift_eth_payload_axis_extra_cycle_reg = 1'b0;
// internal datapath
reg [DATA_WIDTH-1:0] m_axis_tdata_int;
reg [KEEP_WIDTH-1:0] m_axis_tkeep_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
assign s_eth_hdr_ready = s_eth_hdr_ready_reg;
assign s_eth_payload_axis_tready = s_eth_payload_axis_tready_reg;
assign busy = busy_reg;
always @* begin
if (OFFSET == 0) begin
// passthrough if no overlap
shift_eth_payload_axis_tdata = s_eth_payload_axis_tdata;
shift_eth_payload_axis_tkeep = s_eth_payload_axis_tkeep;
shift_eth_payload_axis_tvalid = s_eth_payload_axis_tvalid;
shift_eth_payload_axis_tlast = s_eth_payload_axis_tlast;
shift_eth_payload_axis_tuser = s_eth_payload_axis_tuser;
shift_eth_payload_axis_input_tready = 1'b1;
end else if (shift_eth_payload_axis_extra_cycle_reg) begin
shift_eth_payload_axis_tdata = {s_eth_payload_axis_tdata, save_eth_payload_axis_tdata_reg} >> ((KEEP_WIDTH-OFFSET)*8);
shift_eth_payload_axis_tkeep = {{KEEP_WIDTH{1'b0}}, save_eth_payload_axis_tkeep_reg} >> (KEEP_WIDTH-OFFSET);
shift_eth_payload_axis_tvalid = 1'b1;
shift_eth_payload_axis_tlast = save_eth_payload_axis_tlast_reg;
shift_eth_payload_axis_tuser = save_eth_payload_axis_tuser_reg;
shift_eth_payload_axis_input_tready = flush_save;
end else begin
shift_eth_payload_axis_tdata = {s_eth_payload_axis_tdata, save_eth_payload_axis_tdata_reg} >> ((KEEP_WIDTH-OFFSET)*8);
shift_eth_payload_axis_tkeep = {s_eth_payload_axis_tkeep, save_eth_payload_axis_tkeep_reg} >> (KEEP_WIDTH-OFFSET);
shift_eth_payload_axis_tvalid = s_eth_payload_axis_tvalid;
shift_eth_payload_axis_tlast = (s_eth_payload_axis_tlast && ((s_eth_payload_axis_tkeep & ({KEEP_WIDTH{1'b1}} << (KEEP_WIDTH-OFFSET))) == 0));
shift_eth_payload_axis_tuser = (s_eth_payload_axis_tuser && ((s_eth_payload_axis_tkeep & ({KEEP_WIDTH{1'b1}} << (KEEP_WIDTH-OFFSET))) == 0));
shift_eth_payload_axis_input_tready = !(s_eth_payload_axis_tlast && s_eth_payload_axis_tready && s_eth_payload_axis_tvalid);
end
end
always @* begin
send_eth_header_next = send_eth_header_reg;
send_eth_payload_next = send_eth_payload_reg;
ptr_next = ptr_reg;
s_eth_hdr_ready_next = 1'b0;
s_eth_payload_axis_tready_next = 1'b0;
store_eth_hdr = 1'b0;
flush_save = 1'b0;
transfer_in_save = 1'b0;
m_axis_tdata_int = {DATA_WIDTH{1'b0}};
m_axis_tkeep_int = {KEEP_WIDTH{1'b0}};
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
if (s_eth_hdr_ready && s_eth_hdr_valid) begin
store_eth_hdr = 1'b1;
ptr_next = 0;
send_eth_header_next = 1'b1;
send_eth_payload_next = (OFFSET != 0) && (CYCLE_COUNT == 1);
s_eth_payload_axis_tready_next = send_eth_payload_next && m_axis_tready_int_early;
end
if (send_eth_payload_reg) begin
s_eth_payload_axis_tready_next = m_axis_tready_int_early && shift_eth_payload_axis_input_tready;
m_axis_tdata_int = shift_eth_payload_axis_tdata;
m_axis_tkeep_int = shift_eth_payload_axis_tkeep;
m_axis_tlast_int = shift_eth_payload_axis_tlast;
m_axis_tuser_int = shift_eth_payload_axis_tuser;
if ((s_eth_payload_axis_tready && s_eth_payload_axis_tvalid) || (m_axis_tready_int_reg && shift_eth_payload_axis_extra_cycle_reg)) begin
transfer_in_save = 1'b1;
m_axis_tvalid_int = 1'b1;
if (shift_eth_payload_axis_tlast) begin
flush_save = 1'b1;
s_eth_payload_axis_tready_next = 1'b0;
ptr_next = 0;
send_eth_payload_next = 1'b0;
end
end
end
if (m_axis_tready_int_reg && (!OFFSET || !send_eth_payload_reg || m_axis_tvalid_int)) begin
if (send_eth_header_reg) begin
ptr_next = ptr_reg + 1;
if ((OFFSET != 0) && (CYCLE_COUNT == 1 || ptr_next == CYCLE_COUNT-1) && !send_eth_payload_reg) begin
send_eth_payload_next = 1'b1;
s_eth_payload_axis_tready_next = m_axis_tready_int_early && shift_eth_payload_axis_input_tready;
end
m_axis_tvalid_int = 1'b1;
`define _HEADER_FIELD_(offset, field) \
if (ptr_reg == offset/BYTE_LANES) begin \
m_axis_tdata_int[(offset%BYTE_LANES)*8 +: 8] = field; \
m_axis_tkeep_int[offset%BYTE_LANES] = 1'b1; \
end
`_HEADER_FIELD_(0, eth_dest_mac_reg[5*8 +: 8])
`_HEADER_FIELD_(1, eth_dest_mac_reg[4*8 +: 8])
`_HEADER_FIELD_(2, eth_dest_mac_reg[3*8 +: 8])
`_HEADER_FIELD_(3, eth_dest_mac_reg[2*8 +: 8])
`_HEADER_FIELD_(4, eth_dest_mac_reg[1*8 +: 8])
`_HEADER_FIELD_(5, eth_dest_mac_reg[0*8 +: 8])
`_HEADER_FIELD_(6, eth_src_mac_reg[5*8 +: 8])
`_HEADER_FIELD_(7, eth_src_mac_reg[4*8 +: 8])
`_HEADER_FIELD_(8, eth_src_mac_reg[3*8 +: 8])
`_HEADER_FIELD_(9, eth_src_mac_reg[2*8 +: 8])
`_HEADER_FIELD_(10, eth_src_mac_reg[1*8 +: 8])
`_HEADER_FIELD_(11, eth_src_mac_reg[0*8 +: 8])
`_HEADER_FIELD_(12, eth_type_reg[1*8 +: 8])
`_HEADER_FIELD_(13, eth_type_reg[0*8 +: 8])
if (ptr_reg == 13/BYTE_LANES) begin
if (!send_eth_payload_reg) begin
s_eth_payload_axis_tready_next = m_axis_tready_int_early;
send_eth_payload_next = 1'b1;
end
send_eth_header_next = 1'b0;
end
`undef _HEADER_FIELD_
end
end
s_eth_hdr_ready_next = !(send_eth_header_next || send_eth_payload_next);
end
always @(posedge clk) begin
send_eth_header_reg <= send_eth_header_next;
send_eth_payload_reg <= send_eth_payload_next;
ptr_reg <= ptr_next;
s_eth_hdr_ready_reg <= s_eth_hdr_ready_next;
s_eth_payload_axis_tready_reg <= s_eth_payload_axis_tready_next;
busy_reg <= send_eth_header_next || send_eth_payload_next;
if (store_eth_hdr) begin
eth_dest_mac_reg <= s_eth_dest_mac;
eth_src_mac_reg <= s_eth_src_mac;
eth_type_reg <= s_eth_type;
end
if (transfer_in_save) begin
save_eth_payload_axis_tdata_reg <= s_eth_payload_axis_tdata;
save_eth_payload_axis_tkeep_reg <= s_eth_payload_axis_tkeep;
save_eth_payload_axis_tuser_reg <= s_eth_payload_axis_tuser;
end
if (flush_save) begin
save_eth_payload_axis_tlast_reg <= 1'b0;
shift_eth_payload_axis_extra_cycle_reg <= 1'b0;
end else if (transfer_in_save) begin
save_eth_payload_axis_tlast_reg <= s_eth_payload_axis_tlast;
shift_eth_payload_axis_extra_cycle_reg <= OFFSET ? s_eth_payload_axis_tlast && ((s_eth_payload_axis_tkeep & ({KEEP_WIDTH{1'b1}} << (KEEP_WIDTH-OFFSET))) != 0) : 1'b0;
end
if (rst) begin
send_eth_header_reg <= 1'b0;
send_eth_payload_reg <= 1'b0;
ptr_reg <= 0;
s_eth_hdr_ready_reg <= 1'b0;
s_eth_payload_axis_tready_reg <= 1'b0;
busy_reg <= 1'b0;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [DATA_WIDTH-1:0] temp_m_axis_tdata_reg = {DATA_WIDTH{1'b0}};
reg [KEEP_WIDTH-1:0] temp_m_axis_tkeep_reg = {KEEP_WIDTH{1'b0}};
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = KEEP_ENABLE ? m_axis_tkeep_reg : {KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or if both output registers are empty
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && !m_axis_tvalid_reg);
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tkeep_reg <= m_axis_tkeep_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tkeep_reg <= temp_m_axis_tkeep_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tkeep_reg <= m_axis_tkeep_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall