mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
392 lines
14 KiB
Verilog
392 lines
14 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2018 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* AXI4 RAM
|
|
*/
|
|
module axi_ram #
|
|
(
|
|
parameter DATA_WIDTH = 32, // width of data bus in bits
|
|
parameter ADDR_WIDTH = 16, // width of address bus in bits
|
|
parameter STRB_WIDTH = (DATA_WIDTH/8),
|
|
parameter ID_WIDTH = 8
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
input wire [ID_WIDTH-1:0] s_axi_awid,
|
|
input wire [ADDR_WIDTH-1:0] s_axi_awaddr,
|
|
input wire [7:0] s_axi_awlen,
|
|
input wire [2:0] s_axi_awsize,
|
|
input wire [1:0] s_axi_awburst,
|
|
input wire s_axi_awlock,
|
|
input wire [3:0] s_axi_awcache,
|
|
input wire [2:0] s_axi_awprot,
|
|
input wire s_axi_awvalid,
|
|
output wire s_axi_awready,
|
|
input wire [DATA_WIDTH-1:0] s_axi_wdata,
|
|
input wire [STRB_WIDTH-1:0] s_axi_wstrb,
|
|
input wire s_axi_wlast,
|
|
input wire s_axi_wvalid,
|
|
output wire s_axi_wready,
|
|
output wire [ID_WIDTH-1:0] s_axi_bid,
|
|
output wire [1:0] s_axi_bresp,
|
|
output wire s_axi_bvalid,
|
|
input wire s_axi_bready,
|
|
input wire [ID_WIDTH-1:0] s_axi_arid,
|
|
input wire [ADDR_WIDTH-1:0] s_axi_araddr,
|
|
input wire [7:0] s_axi_arlen,
|
|
input wire [2:0] s_axi_arsize,
|
|
input wire [1:0] s_axi_arburst,
|
|
input wire s_axi_arlock,
|
|
input wire [3:0] s_axi_arcache,
|
|
input wire [2:0] s_axi_arprot,
|
|
input wire s_axi_arvalid,
|
|
output wire s_axi_arready,
|
|
output wire [ID_WIDTH-1:0] s_axi_rid,
|
|
output wire [DATA_WIDTH-1:0] s_axi_rdata,
|
|
output wire [1:0] s_axi_rresp,
|
|
output wire s_axi_rlast,
|
|
output wire s_axi_rvalid,
|
|
input wire s_axi_rready
|
|
);
|
|
|
|
parameter VALID_ADDR_WIDTH = ADDR_WIDTH - $clog2(STRB_WIDTH);
|
|
parameter WORD_WIDTH = STRB_WIDTH;
|
|
parameter WORD_SIZE = DATA_WIDTH/WORD_WIDTH;
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (WORD_SIZE * STRB_WIDTH != DATA_WIDTH) begin
|
|
$error("Error: AXI data width not evenly divisble");
|
|
$finish;
|
|
end
|
|
|
|
if (2**$clog2(WORD_WIDTH) != WORD_WIDTH) begin
|
|
$error("Error: AXI word width must be even power of two");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
localparam [0:0]
|
|
READ_STATE_IDLE = 1'd0,
|
|
READ_STATE_BURST = 1'd1;
|
|
|
|
reg [0:0] read_state_reg = READ_STATE_IDLE, read_state_next;
|
|
|
|
localparam [0:0]
|
|
WRITE_STATE_IDLE = 1'd0,
|
|
WRITE_STATE_BURST = 1'd1;
|
|
|
|
reg [0:0] write_state_reg = WRITE_STATE_IDLE, write_state_next;
|
|
|
|
reg mem_wr_en;
|
|
reg mem_rd_en;
|
|
|
|
reg [ID_WIDTH-1:0] read_id_reg = {ID_WIDTH{1'b0}}, read_id_next;
|
|
reg [ADDR_WIDTH-1:0] read_addr_reg = {ADDR_WIDTH{1'b0}}, read_addr_next;
|
|
reg read_addr_valid_reg = 1'b0, read_addr_valid_next;
|
|
reg read_addr_ready;
|
|
reg read_last_reg = 1'b0, read_last_next;
|
|
reg [7:0] read_count_reg = 8'd0, read_count_next;
|
|
reg [2:0] read_size_reg = 3'd0, read_size_next;
|
|
reg [1:0] read_burst_reg = 2'd0, read_burst_next;
|
|
reg [ID_WIDTH-1:0] write_id_reg = {ID_WIDTH{1'b0}}, write_id_next;
|
|
reg [ADDR_WIDTH-1:0] write_addr_reg = {ADDR_WIDTH{1'b0}}, write_addr_next;
|
|
reg write_addr_valid_reg = 1'b0, write_addr_valid_next;
|
|
reg write_addr_ready;
|
|
reg [7:0] write_count_reg = 8'd0, write_count_next;
|
|
reg [2:0] write_size_reg = 3'd0, write_size_next;
|
|
reg [1:0] write_burst_reg = 2'd0, write_burst_next;
|
|
|
|
reg s_axi_awready_reg = 1'b0, s_axi_awready_next;
|
|
reg s_axi_wready_reg = 1'b0, s_axi_wready_next;
|
|
reg [ID_WIDTH-1:0] s_axi_bid_reg = {ID_WIDTH{1'b0}}, s_axi_bid_next;
|
|
reg [1:0] s_axi_bresp_reg = 2'b00, s_axi_bresp_next;
|
|
reg s_axi_bvalid_reg = 1'b0, s_axi_bvalid_next;
|
|
reg s_axi_arready_reg = 1'b0, s_axi_arready_next;
|
|
reg [ID_WIDTH-1:0] s_axi_rid_reg = {ID_WIDTH{1'b0}}, s_axi_rid_next;
|
|
reg [DATA_WIDTH-1:0] s_axi_rdata_reg = {DATA_WIDTH{1'b0}}, s_axi_rdata_next;
|
|
reg [1:0] s_axi_rresp_reg = 2'b00, s_axi_rresp_next;
|
|
reg s_axi_rlast_reg = 1'b0, s_axi_rlast_next;
|
|
reg s_axi_rvalid_reg = 1'b0, s_axi_rvalid_next;
|
|
|
|
// (* RAM_STYLE="BLOCK" *)
|
|
reg [DATA_WIDTH-1:0] mem[(2**VALID_ADDR_WIDTH)-1:0];
|
|
|
|
wire [VALID_ADDR_WIDTH-1:0] s_axi_awaddr_valid = s_axi_awaddr >> (ADDR_WIDTH - VALID_ADDR_WIDTH);
|
|
wire [VALID_ADDR_WIDTH-1:0] s_axi_araddr_valid = s_axi_araddr >> (ADDR_WIDTH - VALID_ADDR_WIDTH);
|
|
wire [VALID_ADDR_WIDTH-1:0] read_addr_valid = read_addr_reg >> (ADDR_WIDTH - VALID_ADDR_WIDTH);
|
|
wire [VALID_ADDR_WIDTH-1:0] write_addr_valid = write_addr_reg >> (ADDR_WIDTH - VALID_ADDR_WIDTH);
|
|
|
|
assign s_axi_awready = s_axi_awready_reg;
|
|
assign s_axi_wready = s_axi_wready_reg;
|
|
assign s_axi_bid = s_axi_bid_reg;
|
|
assign s_axi_bresp = s_axi_bresp_reg;
|
|
assign s_axi_bvalid = s_axi_bvalid_reg;
|
|
assign s_axi_arready = s_axi_arready_reg;
|
|
assign s_axi_rid = s_axi_rid_reg;
|
|
assign s_axi_rdata = s_axi_rdata_reg;
|
|
assign s_axi_rresp = s_axi_rresp_reg;
|
|
assign s_axi_rlast = s_axi_rlast_reg;
|
|
assign s_axi_rvalid = s_axi_rvalid_reg;
|
|
|
|
integer i, j;
|
|
|
|
initial begin
|
|
// two nested loops for smaller number of iterations per loop
|
|
// workaround for synthesizer complaints about large loop counts
|
|
for (i = 0; i < 2**ADDR_WIDTH; i = i + 2**(ADDR_WIDTH/2)) begin
|
|
for (j = i; j < i + 2**(ADDR_WIDTH/2); j = j + 1) begin
|
|
mem[j] = 0;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
write_state_next = WRITE_STATE_IDLE;
|
|
|
|
mem_wr_en = 1'b0;
|
|
|
|
write_addr_ready = 1'b0;
|
|
|
|
if (s_axi_wready & s_axi_wvalid) begin
|
|
write_addr_ready = 1'b1;
|
|
mem_wr_en = 1'b1;
|
|
end
|
|
|
|
write_id_next = write_id_reg;
|
|
write_addr_next = write_addr_reg;
|
|
write_addr_valid_next = write_addr_valid_reg && !write_addr_ready;
|
|
write_count_next = write_count_reg;
|
|
write_size_next = write_size_reg;
|
|
write_burst_next = write_burst_reg;
|
|
|
|
s_axi_awready_next = 1'b0;
|
|
s_axi_wready_next = write_addr_valid_next;
|
|
s_axi_bid_next = s_axi_bid_reg;
|
|
s_axi_bresp_next = s_axi_bresp_reg;
|
|
s_axi_bvalid_next = s_axi_bvalid_reg && !s_axi_bready;
|
|
|
|
case (write_state_reg)
|
|
WRITE_STATE_IDLE: begin
|
|
s_axi_awready_next = (write_addr_ready || !write_addr_valid_reg) && (!s_axi_bvalid || s_axi_bready);
|
|
|
|
if (s_axi_awready & s_axi_awvalid) begin
|
|
write_id_next = s_axi_awid;
|
|
write_addr_next = s_axi_awaddr;
|
|
write_count_next = s_axi_awlen;
|
|
write_size_next = s_axi_awsize < $clog2(STRB_WIDTH) ? s_axi_awsize : $clog2(STRB_WIDTH);
|
|
write_burst_next = s_axi_awburst;
|
|
|
|
write_addr_valid_next = 1'b1;
|
|
s_axi_wready_next = 1'b1;
|
|
if (s_axi_awlen > 0) begin
|
|
s_axi_awready_next = 1'b0;
|
|
write_state_next = WRITE_STATE_BURST;
|
|
end else begin
|
|
s_axi_awready_next = 1'b0;
|
|
s_axi_bid_next = write_id_next;
|
|
s_axi_bresp_next = 2'b00;
|
|
s_axi_bvalid_next = 1'b1;
|
|
write_state_next = WRITE_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
write_state_next = WRITE_STATE_IDLE;
|
|
end
|
|
end
|
|
WRITE_STATE_BURST: begin
|
|
s_axi_awready_next = 1'b0;
|
|
|
|
if (write_addr_ready) begin
|
|
if (write_burst_reg != 2'b00) begin
|
|
write_addr_next = write_addr_reg + (1 << write_size_reg);
|
|
end
|
|
write_count_next = write_count_reg - 1;
|
|
s_axi_wready_next = 1'b1;
|
|
if (write_count_reg > 0) begin
|
|
write_addr_valid_next = 1'b1;
|
|
write_state_next = WRITE_STATE_BURST;
|
|
end else begin
|
|
write_addr_valid_next = 1'b0;
|
|
s_axi_awready_next = 1'b0;
|
|
s_axi_wready_next = 1'b0;
|
|
s_axi_bid_next = write_id_reg;
|
|
s_axi_bresp_next = 2'b00;
|
|
s_axi_bvalid_next = 1'b1;
|
|
write_state_next = WRITE_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
write_state_next = WRITE_STATE_BURST;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
write_state_reg <= WRITE_STATE_IDLE;
|
|
write_addr_valid_reg <= 1'b0;
|
|
s_axi_awready_reg <= 1'b0;
|
|
s_axi_wready_reg <= 1'b0;
|
|
s_axi_bvalid_reg <= 1'b0;
|
|
end else begin
|
|
write_state_reg <= write_state_next;
|
|
write_addr_valid_reg <= write_addr_valid_next;
|
|
s_axi_awready_reg <= s_axi_awready_next;
|
|
s_axi_wready_reg <= s_axi_wready_next;
|
|
s_axi_bvalid_reg <= s_axi_bvalid_next;
|
|
end
|
|
|
|
write_id_reg <= write_id_next;
|
|
write_addr_reg <= write_addr_next;
|
|
write_count_reg <= write_count_next;
|
|
write_size_reg <= write_size_next;
|
|
write_burst_reg <= write_burst_next;
|
|
|
|
s_axi_bid_reg <= s_axi_bid_next;
|
|
s_axi_bresp_reg <= s_axi_bresp_next;
|
|
|
|
for (i = 0; i < WORD_WIDTH; i = i + 1) begin
|
|
if (mem_wr_en & s_axi_wstrb[i]) begin
|
|
mem[write_addr_valid][8*i +: 8] <= s_axi_wdata[8*i +: 8];
|
|
end
|
|
end
|
|
end
|
|
|
|
always @* begin
|
|
read_state_next = READ_STATE_IDLE;
|
|
|
|
mem_rd_en = 1'b0;
|
|
|
|
read_addr_ready = s_axi_rready;
|
|
|
|
s_axi_rid_next = s_axi_rid_reg;
|
|
s_axi_rresp_next = s_axi_rresp_reg;
|
|
s_axi_rlast_next = s_axi_rlast_reg;
|
|
s_axi_rvalid_next = s_axi_rvalid_reg && !s_axi_rready;
|
|
|
|
if (read_addr_valid_reg && (s_axi_rready || !s_axi_rvalid)) begin
|
|
read_addr_ready = 1'b1;
|
|
mem_rd_en = 1'b1;
|
|
s_axi_rvalid_next = 1'b1;
|
|
s_axi_rid_next = read_id_reg;
|
|
s_axi_rlast_next = read_last_reg;
|
|
end
|
|
|
|
read_id_next = read_id_reg;
|
|
read_addr_next = read_addr_reg;
|
|
read_addr_valid_next = read_addr_valid_reg && !read_addr_ready;
|
|
read_last_next = read_last_reg;
|
|
read_count_next = read_count_reg;
|
|
read_size_next = read_size_reg;
|
|
read_burst_next = read_burst_reg;
|
|
|
|
s_axi_arready_next = 1'b0;
|
|
|
|
case (read_state_reg)
|
|
READ_STATE_IDLE: begin
|
|
s_axi_arready_next = (read_addr_ready || !read_addr_valid_reg);
|
|
|
|
if (s_axi_arready & s_axi_arvalid) begin
|
|
read_id_next = s_axi_arid;
|
|
read_addr_next = s_axi_araddr;
|
|
read_count_next = s_axi_arlen;
|
|
read_size_next = s_axi_arsize < $clog2(STRB_WIDTH) ? s_axi_arsize : $clog2(STRB_WIDTH);
|
|
read_burst_next = s_axi_arburst;
|
|
|
|
read_addr_valid_next = 1'b1;
|
|
if (s_axi_arlen > 0) begin
|
|
s_axi_arready_next = 1'b0;
|
|
read_last_next = 1'b0;
|
|
read_state_next = READ_STATE_BURST;
|
|
end else begin
|
|
s_axi_arready_next = 1'b0;
|
|
read_last_next = 1'b1;
|
|
read_state_next = READ_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
read_state_next = READ_STATE_IDLE;
|
|
end
|
|
end
|
|
READ_STATE_BURST: begin
|
|
s_axi_arready_next = 1'b0;
|
|
|
|
if (read_addr_ready) begin
|
|
if (read_burst_reg != 2'b00) begin
|
|
read_addr_next = read_addr_reg + (1 << read_size_reg);
|
|
end
|
|
read_count_next = read_count_reg - 1;
|
|
read_last_next = read_count_next == 0;
|
|
if (read_count_reg > 0) begin
|
|
read_addr_valid_next = 1'b1;
|
|
read_state_next = READ_STATE_BURST;
|
|
end else begin
|
|
s_axi_arready_next = 1'b0;
|
|
read_addr_valid_next = 1'b0;
|
|
read_state_next = READ_STATE_IDLE;
|
|
end
|
|
end else begin
|
|
read_state_next = READ_STATE_BURST;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
read_state_reg <= READ_STATE_IDLE;
|
|
read_addr_valid_reg <= 1'b0;
|
|
s_axi_arready_reg <= 1'b0;
|
|
s_axi_rvalid_reg <= 1'b0;
|
|
end else begin
|
|
read_state_reg <= read_state_next;
|
|
read_addr_valid_reg <= read_addr_valid_next;
|
|
s_axi_arready_reg <= s_axi_arready_next;
|
|
s_axi_rvalid_reg <= s_axi_rvalid_next;
|
|
end
|
|
|
|
read_id_reg <= read_id_next;
|
|
read_addr_reg <= read_addr_next;
|
|
read_last_reg <= read_last_next;
|
|
read_count_reg <= read_count_next;
|
|
read_size_reg <= read_size_next;
|
|
read_burst_reg <= read_burst_next;
|
|
|
|
s_axi_rid_reg <= s_axi_rid_next;
|
|
s_axi_rresp_reg <= s_axi_rresp_next;
|
|
s_axi_rlast_reg <= s_axi_rlast_next;
|
|
|
|
if (mem_rd_en) begin
|
|
s_axi_rdata_reg <= mem[read_addr_valid];
|
|
end
|
|
end
|
|
|
|
endmodule
|