1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/modules/mqnic/mqnic_tx.c
2021-12-12 14:20:56 -08:00

562 lines
15 KiB
C

// SPDX-License-Identifier: BSD-2-Clause-Views
/*
* Copyright 2019-2021, The Regents of the University of California.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* The views and conclusions contained in the software and documentation
* are those of the authors and should not be interpreted as representing
* official policies, either expressed or implied, of The Regents of the
* University of California.
*/
#include <linux/version.h>
#include "mqnic.h"
int mqnic_create_tx_ring(struct mqnic_priv *priv, struct mqnic_ring **ring_ptr,
int index, u8 __iomem *hw_addr)
{
struct mqnic_ring *ring;
ring = kzalloc(sizeof(*ring), GFP_KERNEL);
if (!ring)
return -ENOMEM;
ring->dev = priv->dev;
ring->ndev = priv->ndev;
ring->priv = priv;
ring->index = index;
ring->active = 0;
ring->hw_addr = hw_addr;
ring->hw_ptr_mask = 0xffff;
ring->hw_head_ptr = hw_addr + MQNIC_QUEUE_HEAD_PTR_REG;
ring->hw_tail_ptr = hw_addr + MQNIC_QUEUE_TAIL_PTR_REG;
ring->head_ptr = 0;
ring->tail_ptr = 0;
ring->clean_tail_ptr = 0;
// deactivate queue
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
*ring_ptr = ring;
return 0;
}
void mqnic_destroy_tx_ring(struct mqnic_ring **ring_ptr)
{
struct mqnic_ring *ring = *ring_ptr;
*ring_ptr = NULL;
mqnic_free_tx_ring(ring);
kfree(ring);
}
int mqnic_alloc_tx_ring(struct mqnic_ring *ring, int size, int stride)
{
int ret;
if (ring->active || ring->buf)
return -EINVAL;
ring->size = roundup_pow_of_two(size);
ring->full_size = ring->size >> 1;
ring->size_mask = ring->size - 1;
ring->stride = roundup_pow_of_two(stride);
ring->desc_block_size = ring->stride / MQNIC_DESC_SIZE;
ring->log_desc_block_size = ring->desc_block_size < 2 ? 0 : ilog2(ring->desc_block_size - 1) + 1;
ring->desc_block_size = 1 << ring->log_desc_block_size;
ring->tx_info = kvzalloc(sizeof(*ring->tx_info) * ring->size, GFP_KERNEL);
if (!ring->tx_info)
return -ENOMEM;
ring->buf_size = ring->size * ring->stride;
ring->buf = dma_alloc_coherent(ring->dev, ring->buf_size, &ring->buf_dma_addr, GFP_KERNEL);
if (!ring->buf) {
ret = -ENOMEM;
goto fail_info;
}
ring->head_ptr = 0;
ring->tail_ptr = 0;
ring->clean_tail_ptr = 0;
// deactivate queue
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
// set base address
iowrite32(ring->buf_dma_addr, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 0);
iowrite32(ring->buf_dma_addr >> 32, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 4);
// set completion queue index
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_CPL_QUEUE_INDEX_REG);
// set pointers
iowrite32(ring->head_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_HEAD_PTR_REG);
iowrite32(ring->tail_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_TAIL_PTR_REG);
// set size
iowrite32(ilog2(ring->size) | (ring->log_desc_block_size << 8),
ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
return 0;
fail_info:
kvfree(ring->tx_info);
ring->tx_info = NULL;
return ret;
}
void mqnic_free_tx_ring(struct mqnic_ring *ring)
{
mqnic_deactivate_tx_ring(ring);
if (!ring->buf)
return;
mqnic_free_tx_buf(ring);
dma_free_coherent(ring->dev, ring->buf_size, ring->buf, ring->buf_dma_addr);
ring->buf = NULL;
ring->buf_dma_addr = 0;
kvfree(ring->tx_info);
ring->tx_info = NULL;
}
int mqnic_activate_tx_ring(struct mqnic_ring *ring, struct mqnic_cq_ring *cq_ring)
{
mqnic_deactivate_tx_ring(ring);
if (!ring->buf || !cq_ring || cq_ring->handler || cq_ring->src_ring)
return -EINVAL;
ring->cq_ring = cq_ring;
cq_ring->src_ring = ring;
cq_ring->handler = mqnic_tx_irq;
// deactivate queue
iowrite32(0, ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
// set base address
iowrite32(ring->buf_dma_addr, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 0);
iowrite32(ring->buf_dma_addr >> 32, ring->hw_addr + MQNIC_QUEUE_BASE_ADDR_REG + 4);
// set completion queue index
iowrite32(cq_ring->index, ring->hw_addr + MQNIC_QUEUE_CPL_QUEUE_INDEX_REG);
// set pointers
iowrite32(ring->head_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_HEAD_PTR_REG);
iowrite32(ring->tail_ptr & ring->hw_ptr_mask, ring->hw_addr + MQNIC_QUEUE_TAIL_PTR_REG);
// set size and activate queue
iowrite32(ilog2(ring->size) | (ring->log_desc_block_size << 8) | MQNIC_QUEUE_ACTIVE_MASK,
ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
ring->active = 1;
return 0;
}
void mqnic_deactivate_tx_ring(struct mqnic_ring *ring)
{
// deactivate queue
iowrite32(ilog2(ring->size) | (ring->log_desc_block_size << 8),
ring->hw_addr + MQNIC_QUEUE_ACTIVE_LOG_SIZE_REG);
if (ring->cq_ring) {
ring->cq_ring->src_ring = NULL;
ring->cq_ring->handler = NULL;
}
ring->cq_ring = NULL;
ring->active = 0;
}
bool mqnic_is_tx_ring_empty(const struct mqnic_ring *ring)
{
return ring->head_ptr == ring->clean_tail_ptr;
}
bool mqnic_is_tx_ring_full(const struct mqnic_ring *ring)
{
return ring->head_ptr - ring->clean_tail_ptr >= ring->full_size;
}
void mqnic_tx_read_tail_ptr(struct mqnic_ring *ring)
{
ring->tail_ptr += (ioread32(ring->hw_tail_ptr) - ring->tail_ptr) & ring->hw_ptr_mask;
}
void mqnic_tx_write_head_ptr(struct mqnic_ring *ring)
{
iowrite32(ring->head_ptr & ring->hw_ptr_mask, ring->hw_head_ptr);
}
void mqnic_free_tx_desc(struct mqnic_ring *ring, int index, int napi_budget)
{
struct mqnic_tx_info *tx_info = &ring->tx_info[index];
struct sk_buff *skb = tx_info->skb;
u32 i;
prefetchw(&skb->users);
dma_unmap_single(ring->dev, dma_unmap_addr(tx_info, dma_addr),
dma_unmap_len(tx_info, len), PCI_DMA_TODEVICE);
dma_unmap_addr_set(tx_info, dma_addr, 0);
// unmap frags
for (i = 0; i < tx_info->frag_count; i++)
dma_unmap_page(ring->dev, tx_info->frags[i].dma_addr,
tx_info->frags[i].len, PCI_DMA_TODEVICE);
napi_consume_skb(skb, napi_budget);
tx_info->skb = NULL;
}
int mqnic_free_tx_buf(struct mqnic_ring *ring)
{
u32 index;
int cnt = 0;
while (!mqnic_is_tx_ring_empty(ring)) {
index = ring->clean_tail_ptr & ring->size_mask;
mqnic_free_tx_desc(ring, index, 0);
ring->clean_tail_ptr++;
cnt++;
}
ring->head_ptr = 0;
ring->tail_ptr = 0;
ring->clean_tail_ptr = 0;
return cnt;
}
int mqnic_process_tx_cq(struct mqnic_cq_ring *cq_ring, int napi_budget)
{
struct mqnic_priv *priv = cq_ring->priv;
struct mqnic_ring *tx_ring = cq_ring->src_ring;
struct mqnic_tx_info *tx_info;
struct mqnic_cpl *cpl;
struct skb_shared_hwtstamps hwts;
u32 cq_index;
u32 cq_tail_ptr;
u32 ring_index;
u32 ring_clean_tail_ptr;
u32 packets = 0;
u32 bytes = 0;
int done = 0;
int budget = napi_budget;
if (unlikely(!priv->port_up))
return done;
// prefetch for BQL
netdev_txq_bql_complete_prefetchw(tx_ring->tx_queue);
// process completion queue
// read head pointer from NIC
mqnic_cq_read_head_ptr(cq_ring);
cq_tail_ptr = cq_ring->tail_ptr;
cq_index = cq_tail_ptr & cq_ring->size_mask;
while (cq_ring->head_ptr != cq_tail_ptr && done < budget) {
cpl = (struct mqnic_cpl *)(cq_ring->buf + cq_index * cq_ring->stride);
ring_index = le16_to_cpu(cpl->index) & tx_ring->size_mask;
tx_info = &tx_ring->tx_info[ring_index];
// TX hardware timestamp
if (unlikely(tx_info->ts_requested)) {
dev_info(priv->dev, "%s: TX TS requested", __func__);
hwts.hwtstamp = mqnic_read_cpl_ts(priv->mdev, tx_ring, cpl);
skb_tstamp_tx(tx_info->skb, &hwts);
}
// free TX descriptor
mqnic_free_tx_desc(tx_ring, ring_index, napi_budget);
packets++;
bytes += le16_to_cpu(cpl->len);
done++;
cq_tail_ptr++;
cq_index = cq_tail_ptr & cq_ring->size_mask;
}
// update CQ tail
cq_ring->tail_ptr = cq_tail_ptr;
mqnic_cq_write_tail_ptr(cq_ring);
// process ring
// read tail pointer from NIC
mqnic_tx_read_tail_ptr(tx_ring);
ring_clean_tail_ptr = READ_ONCE(tx_ring->clean_tail_ptr);
ring_index = ring_clean_tail_ptr & tx_ring->size_mask;
while (ring_clean_tail_ptr != tx_ring->tail_ptr) {
tx_info = &tx_ring->tx_info[ring_index];
if (tx_info->skb)
break;
ring_clean_tail_ptr++;
ring_index = ring_clean_tail_ptr & tx_ring->size_mask;
}
// update ring tail
WRITE_ONCE(tx_ring->clean_tail_ptr, ring_clean_tail_ptr);
// BQL
//netdev_tx_completed_queue(tx_ring->tx_queue, packets, bytes);
// wake queue if it is stopped
if (netif_tx_queue_stopped(tx_ring->tx_queue) && !mqnic_is_tx_ring_full(tx_ring))
netif_tx_wake_queue(tx_ring->tx_queue);
return done;
}
void mqnic_tx_irq(struct mqnic_cq_ring *cq)
{
struct mqnic_priv *priv = cq->priv;
if (likely(priv->port_up))
napi_schedule_irqoff(&cq->napi);
else
mqnic_arm_cq(cq);
}
int mqnic_poll_tx_cq(struct napi_struct *napi, int budget)
{
struct mqnic_cq_ring *cq_ring = container_of(napi, struct mqnic_cq_ring, napi);
int done;
done = mqnic_process_tx_cq(cq_ring, budget);
if (done == budget)
return done;
napi_complete(napi);
mqnic_arm_cq(cq_ring);
return done;
}
static bool mqnic_map_skb(struct mqnic_ring *ring, struct mqnic_tx_info *tx_info,
struct mqnic_desc *tx_desc, struct sk_buff *skb)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
const skb_frag_t *frag;
u32 i;
u32 len;
dma_addr_t dma_addr;
// update tx_info
tx_info->skb = skb;
tx_info->frag_count = 0;
for (i = 0; i < shinfo->nr_frags; i++) {
frag = &shinfo->frags[i];
len = skb_frag_size(frag);
dma_addr = skb_frag_dma_map(ring->dev, frag, 0, len, DMA_TO_DEVICE);
if (unlikely(dma_mapping_error(ring->dev, dma_addr)))
// mapping failed
goto map_error;
// write descriptor
tx_desc[i + 1].len = cpu_to_le32(len);
tx_desc[i + 1].addr = cpu_to_le64(dma_addr);
// update tx_info
tx_info->frag_count = i + 1;
tx_info->frags[i].len = len;
tx_info->frags[i].dma_addr = dma_addr;
}
for (i = tx_info->frag_count; i < ring->desc_block_size - 1; i++) {
tx_desc[i + 1].len = 0;
tx_desc[i + 1].addr = 0;
}
// map skb
len = skb_headlen(skb);
dma_addr = dma_map_single(ring->dev, skb->data, len, PCI_DMA_TODEVICE);
if (unlikely(dma_mapping_error(ring->dev, dma_addr)))
// mapping failed
goto map_error;
// write descriptor
tx_desc[0].len = cpu_to_le32(len);
tx_desc[0].addr = cpu_to_le64(dma_addr);
// update tx_info
dma_unmap_addr_set(tx_info, dma_addr, dma_addr);
dma_unmap_len_set(tx_info, len, len);
return true;
map_error:
dev_err(ring->dev, "%s: DMA mapping failed", __func__);
// unmap frags
for (i = 0; i < tx_info->frag_count; i++)
dma_unmap_page(ring->dev, tx_info->frags[i].dma_addr,
tx_info->frags[i].len, PCI_DMA_TODEVICE);
// update tx_info
tx_info->skb = NULL;
tx_info->frag_count = 0;
return false;
}
netdev_tx_t mqnic_start_xmit(struct sk_buff *skb, struct net_device *ndev)
{
struct skb_shared_info *shinfo = skb_shinfo(skb);
struct mqnic_priv *priv = netdev_priv(ndev);
struct mqnic_ring *ring;
struct mqnic_tx_info *tx_info;
struct mqnic_desc *tx_desc;
int ring_index;
u32 index;
bool stop_queue;
u32 clean_tail_ptr;
if (unlikely(!priv->port_up))
goto tx_drop;
ring_index = skb_get_queue_mapping(skb);
if (unlikely(ring_index >= priv->tx_queue_count))
// queue mapping out of range
goto tx_drop;
ring = priv->tx_ring[ring_index];
clean_tail_ptr = READ_ONCE(ring->clean_tail_ptr);
// prefetch for BQL
netdev_txq_bql_enqueue_prefetchw(ring->tx_queue);
index = ring->head_ptr & ring->size_mask;
tx_desc = (struct mqnic_desc *)(ring->buf + index * ring->stride);
tx_info = &ring->tx_info[index];
// TX hardware timestamp
tx_info->ts_requested = 0;
if (unlikely(priv->if_features & MQNIC_IF_FEATURE_PTP_TS && shinfo->tx_flags & SKBTX_HW_TSTAMP)) {
dev_info(priv->dev, "%s: TX TS requested", __func__);
shinfo->tx_flags |= SKBTX_IN_PROGRESS;
tx_info->ts_requested = 1;
}
// TX hardware checksum
if (skb->ip_summed == CHECKSUM_PARTIAL) {
unsigned int csum_start = skb_checksum_start_offset(skb);
unsigned int csum_offset = skb->csum_offset;
if (csum_start > 255 || csum_offset > 127) {
dev_info(priv->dev, "%s: Hardware checksum fallback start %d offset %d",
__func__, csum_start, csum_offset);
// offset out of range, fall back on software checksum
if (skb_checksum_help(skb)) {
// software checksumming failed
goto tx_drop_count;
}
tx_desc->tx_csum_cmd = 0;
} else {
tx_desc->tx_csum_cmd = cpu_to_le16(0x8000 | (csum_offset << 8) | (csum_start));
}
} else {
tx_desc->tx_csum_cmd = 0;
}
if (shinfo->nr_frags > ring->desc_block_size - 1 || (skb->data_len && skb->data_len < 32)) {
// too many frags or very short data portion; linearize
if (skb_linearize(skb))
goto tx_drop_count;
}
// map skb
if (!mqnic_map_skb(ring, tx_info, tx_desc, skb))
// map failed
goto tx_drop_count;
// count packet
ring->packets++;
ring->bytes += skb->len;
// enqueue
ring->head_ptr++;
skb_tx_timestamp(skb);
stop_queue = mqnic_is_tx_ring_full(ring);
if (unlikely(stop_queue)) {
dev_info(priv->dev, "%s: TX ring %d full on port %d",
__func__, ring_index, priv->index);
netif_tx_stop_queue(ring->tx_queue);
}
// BQL
//netdev_tx_sent_queue(ring->tx_queue, tx_info->len);
//__netdev_tx_sent_queue(ring->tx_queue, tx_info->len, skb->xmit_more);
// enqueue on NIC
#if LINUX_VERSION_CODE >= KERNEL_VERSION(5, 2, 0)
if (unlikely(!netdev_xmit_more() || stop_queue)) {
#else
if (unlikely(!skb->xmit_more || stop_queue)) {
#endif
dma_wmb();
mqnic_tx_write_head_ptr(ring);
}
// check if queue restarted
if (unlikely(stop_queue)) {
smp_rmb();
clean_tail_ptr = READ_ONCE(ring->clean_tail_ptr);
if (unlikely(!mqnic_is_tx_ring_full(ring)))
netif_tx_wake_queue(ring->tx_queue);
}
return NETDEV_TX_OK;
tx_drop_count:
ring->dropped_packets++;
tx_drop:
dev_kfree_skb_any(skb);
return NETDEV_TX_OK;
}