1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_adapter.v
Alex Forencich e308c9559a Rewrite width converter to reduce resource consumption
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2023-08-14 16:56:54 -07:00

326 lines
12 KiB
Verilog

/*
Copyright (c) 2014-2023 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream bus width adapter
*/
module axis_adapter #
(
// Width of input AXI stream interface in bits
parameter S_DATA_WIDTH = 8,
// Propagate tkeep signal on input interface
// If disabled, tkeep assumed to be 1'b1
parameter S_KEEP_ENABLE = (S_DATA_WIDTH>8),
// tkeep signal width (words per cycle) on input interface
parameter S_KEEP_WIDTH = ((S_DATA_WIDTH+7)/8),
// Width of output AXI stream interface in bits
parameter M_DATA_WIDTH = 8,
// Propagate tkeep signal on output interface
// If disabled, tkeep assumed to be 1'b1
parameter M_KEEP_ENABLE = (M_DATA_WIDTH>8),
// tkeep signal width (words per cycle) on output interface
parameter M_KEEP_WIDTH = ((M_DATA_WIDTH+7)/8),
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [S_DATA_WIDTH-1:0] s_axis_tdata,
input wire [S_KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
output wire [M_DATA_WIDTH-1:0] m_axis_tdata,
output wire [M_KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser
);
// force keep width to 1 when disabled
localparam S_BYTE_LANES = S_KEEP_ENABLE ? S_KEEP_WIDTH : 1;
localparam M_BYTE_LANES = M_KEEP_ENABLE ? M_KEEP_WIDTH : 1;
// bus byte sizes (must be identical)
localparam S_BYTE_SIZE = S_DATA_WIDTH / S_BYTE_LANES;
localparam M_BYTE_SIZE = M_DATA_WIDTH / M_BYTE_LANES;
// bus width assertions
initial begin
if (S_BYTE_SIZE * S_BYTE_LANES != S_DATA_WIDTH) begin
$error("Error: input data width not evenly divisible (instance %m)");
$finish;
end
if (M_BYTE_SIZE * M_BYTE_LANES != M_DATA_WIDTH) begin
$error("Error: output data width not evenly divisible (instance %m)");
$finish;
end
if (S_BYTE_SIZE != M_BYTE_SIZE) begin
$error("Error: byte size mismatch (instance %m)");
$finish;
end
end
generate
if (M_BYTE_LANES == S_BYTE_LANES) begin : bypass
// same width; bypass
assign s_axis_tready = m_axis_tready;
assign m_axis_tdata = s_axis_tdata;
assign m_axis_tkeep = M_KEEP_ENABLE ? s_axis_tkeep : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = s_axis_tvalid;
assign m_axis_tlast = s_axis_tlast;
assign m_axis_tid = ID_ENABLE ? s_axis_tid : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? s_axis_tdest : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? s_axis_tuser : {USER_WIDTH{1'b0}};
end else if (M_BYTE_LANES > S_BYTE_LANES) begin : upsize
// output is wider; upsize
// required number of segments in wider bus
localparam SEG_COUNT = M_BYTE_LANES / S_BYTE_LANES;
// data width and keep width per segment
localparam SEG_DATA_WIDTH = M_DATA_WIDTH / SEG_COUNT;
localparam SEG_KEEP_WIDTH = M_BYTE_LANES / SEG_COUNT;
reg [$clog2(SEG_COUNT)-1:0] seg_reg = 0;
reg [S_DATA_WIDTH-1:0] s_axis_tdata_reg = {S_DATA_WIDTH{1'b0}};
reg [S_KEEP_WIDTH-1:0] s_axis_tkeep_reg = {S_KEEP_WIDTH{1'b0}};
reg s_axis_tvalid_reg = 1'b0;
reg s_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] s_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] s_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] s_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
assign s_axis_tready = !s_axis_tvalid_reg;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready;
if (!m_axis_tvalid_reg || m_axis_tready) begin
// output register empty
if (seg_reg == 0) begin
m_axis_tdata_reg[seg_reg*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] <= s_axis_tvalid_reg ? s_axis_tdata_reg : s_axis_tdata;
m_axis_tkeep_reg <= s_axis_tvalid_reg ? s_axis_tkeep_reg : s_axis_tkeep;
end else begin
m_axis_tdata_reg[seg_reg*SEG_DATA_WIDTH +: SEG_DATA_WIDTH] <= s_axis_tdata;
m_axis_tkeep_reg[seg_reg*SEG_KEEP_WIDTH +: SEG_KEEP_WIDTH] <= s_axis_tkeep;
end
m_axis_tlast_reg <= s_axis_tvalid_reg ? s_axis_tlast_reg : s_axis_tlast;
m_axis_tid_reg <= s_axis_tvalid_reg ? s_axis_tid_reg : s_axis_tid;
m_axis_tdest_reg <= s_axis_tvalid_reg ? s_axis_tdest_reg : s_axis_tdest;
m_axis_tuser_reg <= s_axis_tvalid_reg ? s_axis_tuser_reg : s_axis_tuser;
if (s_axis_tvalid_reg) begin
// consume data from buffer
s_axis_tvalid_reg <= 1'b0;
if (s_axis_tlast_reg || seg_reg == SEG_COUNT-1) begin
seg_reg <= 0;
m_axis_tvalid_reg <= 1'b1;
end else begin
seg_reg <= seg_reg + 1;
end
end else if (s_axis_tvalid) begin
// data direct from input
if (s_axis_tlast || seg_reg == SEG_COUNT-1) begin
seg_reg <= 0;
m_axis_tvalid_reg <= 1'b1;
end else begin
seg_reg <= seg_reg + 1;
end
end
end else if (s_axis_tvalid && s_axis_tready) begin
// store input data in skid buffer
s_axis_tdata_reg <= s_axis_tdata;
s_axis_tkeep_reg <= s_axis_tkeep;
s_axis_tvalid_reg <= 1'b1;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tid_reg <= s_axis_tid;
s_axis_tdest_reg <= s_axis_tdest;
s_axis_tuser_reg <= s_axis_tuser;
end
if (rst) begin
seg_reg <= 0;
s_axis_tvalid_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
end
end
end else begin : downsize
// output is narrower; downsize
// required number of segments in wider bus
localparam SEG_COUNT = S_BYTE_LANES / M_BYTE_LANES;
// data width and keep width per segment
localparam SEG_DATA_WIDTH = S_DATA_WIDTH / SEG_COUNT;
localparam SEG_KEEP_WIDTH = S_BYTE_LANES / SEG_COUNT;
reg [S_DATA_WIDTH-1:0] s_axis_tdata_reg = {S_DATA_WIDTH{1'b0}};
reg [S_KEEP_WIDTH-1:0] s_axis_tkeep_reg = {S_KEEP_WIDTH{1'b0}};
reg s_axis_tvalid_reg = 1'b0;
reg s_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] s_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] s_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] s_axis_tuser_reg = {USER_WIDTH{1'b0}};
reg [M_DATA_WIDTH-1:0] m_axis_tdata_reg = {M_DATA_WIDTH{1'b0}};
reg [M_KEEP_WIDTH-1:0] m_axis_tkeep_reg = {M_KEEP_WIDTH{1'b0}};
reg m_axis_tvalid_reg = 1'b0;
reg m_axis_tlast_reg = 1'b0;
reg [ID_WIDTH-1:0] m_axis_tid_reg = {ID_WIDTH{1'b0}};
reg [DEST_WIDTH-1:0] m_axis_tdest_reg = {DEST_WIDTH{1'b0}};
reg [USER_WIDTH-1:0] m_axis_tuser_reg = {USER_WIDTH{1'b0}};
assign s_axis_tready = !s_axis_tvalid_reg;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tkeep = M_KEEP_ENABLE ? m_axis_tkeep_reg : {M_KEEP_WIDTH{1'b1}};
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tid = ID_ENABLE ? m_axis_tid_reg : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_tdest_reg : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_tuser_reg : {USER_WIDTH{1'b0}};
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_reg && !m_axis_tready;
if (!m_axis_tvalid_reg || m_axis_tready) begin
// output register empty
m_axis_tdata_reg <= s_axis_tvalid_reg ? s_axis_tdata_reg : s_axis_tdata;
m_axis_tkeep_reg <= s_axis_tvalid_reg ? s_axis_tkeep_reg : s_axis_tkeep;
m_axis_tlast_reg <= 1'b0;
m_axis_tid_reg <= s_axis_tvalid_reg ? s_axis_tid_reg : s_axis_tid;
m_axis_tdest_reg <= s_axis_tvalid_reg ? s_axis_tdest_reg : s_axis_tdest;
m_axis_tuser_reg <= s_axis_tvalid_reg ? s_axis_tuser_reg : s_axis_tuser;
if (s_axis_tvalid_reg) begin
// buffer has data; shift out from buffer
s_axis_tdata_reg <= s_axis_tdata_reg >> SEG_DATA_WIDTH;
s_axis_tkeep_reg <= s_axis_tkeep_reg >> SEG_KEEP_WIDTH;
m_axis_tvalid_reg <= 1'b1;
if ((s_axis_tkeep_reg >> SEG_KEEP_WIDTH) == 0) begin
s_axis_tvalid_reg <= 1'b0;
m_axis_tlast_reg <= s_axis_tlast_reg;
end
end else if (s_axis_tvalid && s_axis_tready) begin
// buffer is empty; store from input
s_axis_tdata_reg <= s_axis_tdata >> SEG_DATA_WIDTH;
s_axis_tkeep_reg <= s_axis_tkeep >> SEG_KEEP_WIDTH;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tid_reg <= s_axis_tid;
s_axis_tdest_reg <= s_axis_tdest;
s_axis_tuser_reg <= s_axis_tuser;
m_axis_tvalid_reg <= 1'b1;
if ((s_axis_tkeep >> SEG_KEEP_WIDTH) == 0) begin
s_axis_tvalid_reg <= 1'b0;
m_axis_tlast_reg <= s_axis_tlast;
end else begin
s_axis_tvalid_reg <= 1'b1;
end
end
end else if (s_axis_tvalid && s_axis_tready) begin
// store input data
s_axis_tdata_reg <= s_axis_tdata;
s_axis_tkeep_reg <= s_axis_tkeep;
s_axis_tvalid_reg <= 1'b1;
s_axis_tlast_reg <= s_axis_tlast;
s_axis_tid_reg <= s_axis_tid;
s_axis_tdest_reg <= s_axis_tdest;
s_axis_tuser_reg <= s_axis_tuser;
end
if (rst) begin
s_axis_tvalid_reg <= 1'b0;
m_axis_tvalid_reg <= 1'b0;
end
end
end
endgenerate
endmodule
`resetall