mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
347 lines
12 KiB
Verilog
347 lines
12 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2016-2017 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* Parametrizable combinatorial parallel LFSR/CRC
|
|
*/
|
|
module lfsr #
|
|
(
|
|
// width of LFSR
|
|
parameter LFSR_WIDTH = 31,
|
|
// LFSR polynomial
|
|
parameter LFSR_POLY = 31'h10000001,
|
|
// LFSR configuration: "GALOIS", "FIBONACCI"
|
|
parameter LFSR_CONFIG = "FIBONACCI",
|
|
// bit-reverse input and output
|
|
parameter REVERSE = 0,
|
|
// width of data input
|
|
parameter DATA_WIDTH = 8,
|
|
// width of CRC/LFSR output
|
|
parameter OUTPUT_WIDTH = LFSR_WIDTH,
|
|
// implementation style: "AUTO", "LOOP", "REDUCTION"
|
|
parameter STYLE = "AUTO"
|
|
)
|
|
(
|
|
input wire [DATA_WIDTH-1:0] data_in,
|
|
input wire [LFSR_WIDTH-1:0] lfsr_in,
|
|
output wire [OUTPUT_WIDTH-1:0] lfsr_out
|
|
);
|
|
|
|
/*
|
|
|
|
Fully parametrizable combinatorial parallel LFSR/CRC module. Implements an unrolled LFSR
|
|
next state computation, shifting DATA_WIDTH bits per pass through the module. Input data
|
|
is XORed with LFSR feedback path, tie data_in to zero if this is not required.
|
|
|
|
Works in two parts: statically computes a set of bit masks, then uses these bit masks to
|
|
select bits for XORing to compute the next state.
|
|
|
|
Ports:
|
|
|
|
data_in
|
|
|
|
Data bits to be XORed with the LFSR feedback path (DATA_WIDTH bits)
|
|
|
|
lfsr_in
|
|
|
|
LFSR/CRC current state input (LFSR_WIDTH bits)
|
|
|
|
lfsr_out
|
|
|
|
LFSR/CRC next state output (OUTPUT_WIDTH bits)
|
|
|
|
Parameters:
|
|
|
|
LFSR_WIDTH
|
|
|
|
Specify width of LFSR/CRC register
|
|
|
|
LFSR_POLY
|
|
|
|
Specify the LFSR/CRC polynomial in hex format. For example, the polynomial
|
|
|
|
x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1
|
|
|
|
would be represented as
|
|
|
|
32'h04c11db7
|
|
|
|
Note that the largest term (x^32) is suppressed. This term is generated automatically based
|
|
on LFSR_WIDTH.
|
|
|
|
LFSR_CONFIG
|
|
|
|
Specify the LFSR configuration, either Fibonacci or Galois. Fibonacci is generally used
|
|
for linear-feedback shift registers (LFSR) for pseudorandom binary sequence (PRBS) generators,
|
|
scramblers, and descrambers, while Galois is generally used for cyclic redundancy check
|
|
generators and checkers.
|
|
|
|
Fibonacci style (example for 64b66b scrambler, 0x8000000001)
|
|
|
|
,-----------------------------(+)<------------------------------,
|
|
| ^ |
|
|
| .----. .----. .----. | .----. .----. .----. |
|
|
`->| 0 |->| 1 |->...->| 38 |-+->| 39 |->...->| 56 |->| 57 |->(+)<-DIN (MSB first)
|
|
'----' '----' '----' '----' '----' '----'
|
|
|
|
Galois style (example for CRC16, 0x8005)
|
|
|
|
,-------------------+---------------------------------+------------,
|
|
| | | |
|
|
| .----. .----. V .----. .----. .----. V .----. |
|
|
`->| 0 |->| 1 |->(+)->| 2 |->| 3 |->...->| 14 |->(+)->| 15 |->(+)<-DIN (MSB first)
|
|
'----' '----' '----' '----' '----' '----'
|
|
|
|
REVERSE
|
|
|
|
Bit-reverse LFSR input and output.
|
|
|
|
DATA_WIDTH
|
|
|
|
Specify width of input data bus. The module will perform one shift per input data bit,
|
|
so if the input data bus is not required tie data_in to zero and set DATA_WIDTH to the
|
|
required number of shifts per clock cycle.
|
|
|
|
OUTPUT_WIDTH
|
|
|
|
Specify width of output data bus. Defaults to LFSR_WIDTH. Mainly useful for extending
|
|
the output width for LFSRs. Ensure that lfsr_out is properly shifted and truncated so
|
|
that feeding it back around to lfsr_in produces the expected result. Note that if
|
|
OUTPUT_WIDTH is smaller than LFSR_WIDTH, it may not be possible to get the LFSR to
|
|
feed back correctly.
|
|
|
|
STYLE
|
|
|
|
Specify implementation style. Can be "AUTO", "LOOP", or "REDUCTION". When "AUTO"
|
|
is selected, implemenation will be "LOOP" or "REDUCTION" based on synthesis translate
|
|
directives. "REDUCTION" and "LOOP" are functionally identical, however they simulate
|
|
and synthesize differently. "REDUCTION" is implemented with a loop over a Verilog
|
|
reduction operator. "LOOP" is implemented as a doubly-nested loop with no reduction
|
|
operator. "REDUCTION" is very fast for simulation in iverilog and synthesizes well in
|
|
Quartus but synthesizes poorly in ISE, likely due to large inferred XOR gates causing
|
|
problems with the optimizer. "LOOP" synthesizes will in both ISE and Quartus. "AUTO"
|
|
will default to "REDUCTION" when simulating and "LOOP" for synthesizers that obey
|
|
synthesis translate directives.
|
|
|
|
Settings for common LFSR/CRC implementations:
|
|
|
|
Name Configuration Length Polynomial Initial value Notes
|
|
CRC32 Galois, bit-reverse 32 32'h04c11db7 32'hffffffff Ethernet FCS; invert final output
|
|
PRBS6 Fibonacci 6 6'h21 any
|
|
PRBS7 Fibonacci 7 7'h41 amy
|
|
PRBS9 Fibonacci 9 9'h021 any ITU V.52
|
|
PRBS10 Fibonacci 10 10'h081 any ITU
|
|
PRBS11 Fibonacci 11 11'h201 any ITU O.152
|
|
PRBS15 Fibonacci 15 15'h4001 any ITU O.152
|
|
PRBS17 Fibonacci 17 17'h04001 any
|
|
PRBS20 Fibonacci 20 20'h00009 any ITU V.57
|
|
PRBS23 Fibonacci 23 23'h040001 any ITU O.151
|
|
PRBS31 Fibonacci 31 31'h10000001 any
|
|
64b66b Fibonacci 58 58'h8000000001 any 10G Ethernet
|
|
128b130b Fibonacci 23 23'h210125 any PCIe gen 3
|
|
|
|
*/
|
|
|
|
// STATE_WIDTH is OUTPUT_WIDTH or LFSR_WIDTH, whichever is larger
|
|
parameter STATE_WIDTH = OUTPUT_WIDTH > LFSR_WIDTH ? OUTPUT_WIDTH : LFSR_WIDTH;
|
|
|
|
reg [LFSR_WIDTH-1:0] lfsr_mask_state[STATE_WIDTH-1:0];
|
|
reg [DATA_WIDTH-1:0] lfsr_mask_data[STATE_WIDTH-1:0];
|
|
|
|
reg [LFSR_WIDTH-1:0] state_val = 0;
|
|
reg [DATA_WIDTH-1:0] data_val = 0;
|
|
|
|
integer i, j, k;
|
|
|
|
initial begin
|
|
// init bit masks
|
|
for (i = 0; i < STATE_WIDTH; i = i + 1) begin
|
|
lfsr_mask_state[i] = {LFSR_WIDTH{1'b0}};
|
|
if (i < LFSR_WIDTH) begin
|
|
lfsr_mask_state[i][i] = 1'b1;
|
|
end
|
|
lfsr_mask_data[i] = {DATA_WIDTH{1'b0}};
|
|
end
|
|
|
|
// simulate shift register
|
|
if (LFSR_CONFIG == "FIBONACCI") begin
|
|
// Fibonacci configuration
|
|
for (i = DATA_WIDTH-1; i >= 0; i = i - 1) begin
|
|
// determine shift in value
|
|
// current value in last FF, XOR with input data bit (MSB first)
|
|
state_val = lfsr_mask_state[LFSR_WIDTH-1];
|
|
data_val = lfsr_mask_data[LFSR_WIDTH-1];
|
|
data_val = data_val ^ (1 << i);
|
|
|
|
// add XOR inputs from correct indicies
|
|
for (j = 1; j < STATE_WIDTH; j = j + 1) begin
|
|
if (LFSR_POLY & (1 << j)) begin
|
|
state_val = lfsr_mask_state[j-1] ^ state_val;
|
|
data_val = lfsr_mask_data[j-1] ^ data_val;
|
|
end
|
|
end
|
|
|
|
// shift
|
|
for (j = STATE_WIDTH-1; j > 0; j = j - 1) begin
|
|
lfsr_mask_state[j] = lfsr_mask_state[j-1];
|
|
lfsr_mask_data[j] = lfsr_mask_data[j-1];
|
|
end
|
|
lfsr_mask_state[0] = state_val;
|
|
lfsr_mask_data[0] = data_val;
|
|
end
|
|
end else if (LFSR_CONFIG == "GALOIS") begin
|
|
// Galois configuration
|
|
for (i = DATA_WIDTH-1; i >= 0; i = i - 1) begin
|
|
// determine shift in value
|
|
// current value in last FF, XOR with input data bit (MSB first)
|
|
state_val = lfsr_mask_state[LFSR_WIDTH-1];
|
|
data_val = lfsr_mask_data[LFSR_WIDTH-1];
|
|
data_val = data_val ^ (1 << i);
|
|
|
|
// shift
|
|
for (j = STATE_WIDTH-1; j > 0; j = j - 1) begin
|
|
lfsr_mask_state[j] = lfsr_mask_state[j-1];
|
|
lfsr_mask_data[j] = lfsr_mask_data[j-1];
|
|
end
|
|
lfsr_mask_state[0] = state_val;
|
|
lfsr_mask_data[0] = data_val;
|
|
|
|
// add XOR inputs at correct indicies
|
|
for (j = 1; j < STATE_WIDTH; j = j + 1) begin
|
|
if (LFSR_POLY & (1 << j)) begin
|
|
lfsr_mask_state[j] = lfsr_mask_state[j] ^ state_val;
|
|
lfsr_mask_data[j] = lfsr_mask_data[j] ^ data_val;
|
|
end
|
|
end
|
|
end
|
|
end else begin
|
|
$error("Error: unknown configuration setting!");
|
|
$finish;
|
|
end
|
|
|
|
// reverse bits if selected
|
|
if (REVERSE) begin
|
|
// reverse order
|
|
for (i = 0; i < OUTPUT_WIDTH/2; i = i + 1) begin
|
|
state_val = lfsr_mask_state[i];
|
|
data_val = lfsr_mask_data[i];
|
|
lfsr_mask_state[i] = lfsr_mask_state[OUTPUT_WIDTH-i-1];
|
|
lfsr_mask_data[i] = lfsr_mask_data[OUTPUT_WIDTH-i-1];
|
|
lfsr_mask_state[OUTPUT_WIDTH-i-1] = state_val;
|
|
lfsr_mask_data[OUTPUT_WIDTH-i-1] = data_val;
|
|
end
|
|
// reverse bits
|
|
for (i = 0; i < OUTPUT_WIDTH; i = i + 1) begin
|
|
state_val = 0;
|
|
for (j = 0; j < STATE_WIDTH; j = j + 1) begin
|
|
state_val[j] = lfsr_mask_state[i][STATE_WIDTH-j-1];
|
|
end
|
|
lfsr_mask_state[i] = state_val;
|
|
|
|
data_val = 0;
|
|
for (j = 0; j < DATA_WIDTH; j = j + 1) begin
|
|
data_val[j] = lfsr_mask_data[i][DATA_WIDTH-j-1];
|
|
end
|
|
lfsr_mask_data[i] = data_val;
|
|
end
|
|
end
|
|
|
|
// for (i = 0; i < OUTPUT_WIDTH; i = i + 1) begin
|
|
// $display("%b %b", lfsr_mask_state[i], lfsr_mask_data[i]);
|
|
// end
|
|
end
|
|
|
|
// synthesis translate_off
|
|
`define SIMULATION
|
|
// synthesis translate_on
|
|
|
|
`ifdef SIMULATION
|
|
// "AUTO" style is "REDUCTION" for faster simulation
|
|
parameter STYLE_INT = (STYLE == "AUTO") ? "REDUCTION" : STYLE;
|
|
`else
|
|
// "AUTO" style is "LOOP" for better synthesis result
|
|
parameter STYLE_INT = (STYLE == "AUTO") ? "LOOP" : STYLE;
|
|
`endif
|
|
|
|
genvar n;
|
|
|
|
generate
|
|
|
|
if (STYLE_INT == "REDUCTION") begin
|
|
|
|
// use Verilog reduction operator
|
|
// fast in iverilog
|
|
// significantly larger than generated code with ISE (inferred wide XORs may be tripping up optimizer)
|
|
// slightly smaller than generated code with Quartus
|
|
// --> better for simulation
|
|
|
|
for (n = 0; n < OUTPUT_WIDTH; n = n + 1) begin : loop
|
|
assign lfsr_out[n] = ^{(lfsr_in & lfsr_mask_state[n]), (data_in & lfsr_mask_data[n])};
|
|
end
|
|
|
|
end else if (STYLE_INT == "LOOP") begin
|
|
|
|
// use nested loops
|
|
// very slow in iverilog
|
|
// slightly smaller than generated code with ISE
|
|
// same size as generated code with Quartus
|
|
// --> better for synthesis
|
|
|
|
reg [OUTPUT_WIDTH-1:0] lfsr_out_reg = 0;
|
|
|
|
assign lfsr_out = lfsr_out_reg;
|
|
|
|
always @* begin
|
|
for (i = 0; i < OUTPUT_WIDTH; i = i + 1) begin
|
|
lfsr_out_reg[i] = 0;
|
|
for (j = 0; j < STATE_WIDTH; j = j + 1) begin
|
|
if (lfsr_mask_state[i][j]) begin
|
|
lfsr_out_reg[i] = lfsr_out_reg[i] ^ lfsr_in[j];
|
|
end
|
|
end
|
|
for (j = 0; j < DATA_WIDTH; j = j + 1) begin
|
|
if (lfsr_mask_data[i][j]) begin
|
|
lfsr_out_reg[i] = lfsr_out_reg[i] ^ data_in[j];
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
end else begin
|
|
|
|
initial begin
|
|
$error("Error: unknown style setting!");
|
|
$finish;
|
|
end
|
|
|
|
end
|
|
|
|
endgenerate
|
|
|
|
endmodule
|