1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/eth_mac_1g_rgmii_fifo.v
2018-02-26 00:08:08 -08:00

294 lines
8.2 KiB
Verilog

/*
Copyright (c) 2015-2017 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* 1G Ethernet MAC with RGMII interface and TX and RX FIFOs
*/
module eth_mac_1g_rgmii_fifo #
(
// target ("SIM", "GENERIC", "XILINX", "ALTERA")
parameter TARGET = "GENERIC",
// IODDR style ("IODDR", "IODDR2")
// Use IODDR for Virtex-4, Virtex-5, Virtex-6, 7 Series, Ultrascale
// Use IODDR2 for Spartan-6
parameter IODDR_STYLE = "IODDR2",
// Clock input style ("BUFG", "BUFR", "BUFIO", "BUFIO2")
// Use BUFR for Virtex-5, Virtex-6, 7-series
// Use BUFG for Ultrascale
// Use BUFIO2 for Spartan-6
parameter CLOCK_INPUT_STYLE = "BUFIO2",
// Use 90 degree clock for RGMII transmit ("TRUE", "FALSE")
parameter USE_CLK90 = "TRUE",
parameter ENABLE_PADDING = 1,
parameter MIN_FRAME_LENGTH = 64,
parameter TX_FIFO_ADDR_WIDTH = 12,
parameter RX_FIFO_ADDR_WIDTH = 12
)
(
input wire gtx_clk,
input wire gtx_clk90,
input wire gtx_rst,
input wire logic_clk,
input wire logic_rst,
/*
* AXI input
*/
input wire [7:0] tx_axis_tdata,
input wire tx_axis_tvalid,
output wire tx_axis_tready,
input wire tx_axis_tlast,
input wire tx_axis_tuser,
/*
* AXI output
*/
output wire [7:0] rx_axis_tdata,
output wire rx_axis_tvalid,
input wire rx_axis_tready,
output wire rx_axis_tlast,
output wire rx_axis_tuser,
/*
* RGMII interface
*/
input wire rgmii_rx_clk,
input wire [3:0] rgmii_rxd,
input wire rgmii_rx_ctl,
output wire rgmii_tx_clk,
output wire [3:0] rgmii_txd,
output wire rgmii_tx_ctl,
/*
* Status
*/
output wire tx_fifo_overflow,
output wire tx_fifo_bad_frame,
output wire tx_fifo_good_frame,
output wire rx_error_bad_frame,
output wire rx_error_bad_fcs,
output wire rx_fifo_overflow,
output wire rx_fifo_bad_frame,
output wire rx_fifo_good_frame,
output wire [1:0] speed,
/*
* Configuration
*/
input wire [7:0] ifg_delay
);
wire tx_clk;
wire rx_clk;
wire tx_rst;
wire rx_rst;
wire [7:0] tx_fifo_axis_tdata;
wire tx_fifo_axis_tvalid;
wire tx_fifo_axis_tready;
wire tx_fifo_axis_tlast;
wire tx_fifo_axis_tuser;
wire [7:0] rx_fifo_axis_tdata;
wire rx_fifo_axis_tvalid;
wire rx_fifo_axis_tlast;
wire rx_fifo_axis_tuser;
// synchronize MAC status signals into logic clock domain
wire rx_error_bad_frame_int;
wire rx_error_bad_fcs_int;
reg [1:0] rx_sync_reg_1 = 2'd0;
reg [1:0] rx_sync_reg_2 = 2'd0;
reg [1:0] rx_sync_reg_3 = 2'd0;
reg [1:0] rx_sync_reg_4 = 2'd0;
assign rx_error_bad_frame = rx_sync_reg_3[0] ^ rx_sync_reg_4[0];
assign rx_error_bad_fcs = rx_sync_reg_3[1] ^ rx_sync_reg_4[1];
always @(posedge rx_clk or posedge rx_rst) begin
if (rx_rst) begin
rx_sync_reg_1 <= 2'd0;
end else begin
rx_sync_reg_1 <= rx_sync_reg_1 ^ {rx_error_bad_frame_int, rx_error_bad_frame_int};
end
end
always @(posedge logic_clk or posedge logic_rst) begin
if (logic_rst) begin
rx_sync_reg_2 <= 2'd0;
rx_sync_reg_3 <= 2'd0;
rx_sync_reg_4 <= 2'd0;
end else begin
rx_sync_reg_2 <= rx_sync_reg_1;
rx_sync_reg_3 <= rx_sync_reg_2;
rx_sync_reg_4 <= rx_sync_reg_3;
end
end
wire [1:0] speed_int;
reg [1:0] speed_sync_reg_1 = 2'b10;
reg [1:0] speed_sync_reg_2 = 2'b10;
assign speed = speed_sync_reg_2;
always @(posedge logic_clk) begin
speed_sync_reg_1 <= speed_int;
speed_sync_reg_2 <= speed_sync_reg_1;
end
eth_mac_1g_rgmii #(
.TARGET(TARGET),
.IODDR_STYLE(IODDR_STYLE),
.CLOCK_INPUT_STYLE(CLOCK_INPUT_STYLE),
.USE_CLK90(USE_CLK90),
.ENABLE_PADDING(ENABLE_PADDING),
.MIN_FRAME_LENGTH(MIN_FRAME_LENGTH)
)
eth_mac_1g_rgmii_inst (
.gtx_clk(gtx_clk),
.gtx_clk90(gtx_clk90),
.gtx_rst(gtx_rst),
.tx_clk(tx_clk),
.tx_rst(tx_rst),
.rx_clk(rx_clk),
.rx_rst(rx_rst),
.tx_axis_tdata(tx_fifo_axis_tdata),
.tx_axis_tvalid(tx_fifo_axis_tvalid),
.tx_axis_tready(tx_fifo_axis_tready),
.tx_axis_tlast(tx_fifo_axis_tlast),
.tx_axis_tuser(tx_fifo_axis_tuser),
.rx_axis_tdata(rx_fifo_axis_tdata),
.rx_axis_tvalid(rx_fifo_axis_tvalid),
.rx_axis_tlast(rx_fifo_axis_tlast),
.rx_axis_tuser(rx_fifo_axis_tuser),
.rgmii_rx_clk(rgmii_rx_clk),
.rgmii_rxd(rgmii_rxd),
.rgmii_rx_ctl(rgmii_rx_ctl),
.rgmii_tx_clk(rgmii_tx_clk),
.rgmii_txd(rgmii_txd),
.rgmii_tx_ctl(rgmii_tx_ctl),
.rx_error_bad_frame(rx_error_bad_frame_int),
.rx_error_bad_fcs(rx_error_bad_fcs_int),
.speed(speed_int),
.ifg_delay(ifg_delay)
);
axis_async_frame_fifo #(
.ADDR_WIDTH(TX_FIFO_ADDR_WIDTH),
.DATA_WIDTH(8),
.KEEP_ENABLE(0),
.ID_ENABLE(0),
.DEST_ENABLE(0),
.USER_ENABLE(1),
.USER_WIDTH(1),
.USER_BAD_FRAME_VALUE(1'b1),
.USER_BAD_FRAME_MASK(1'b1),
.DROP_BAD_FRAME(1),
.DROP_WHEN_FULL(0)
)
tx_fifo (
// Common reset
.async_rst(logic_rst | tx_rst),
// AXI input
.input_clk(logic_clk),
.input_axis_tdata(tx_axis_tdata),
.input_axis_tvalid(tx_axis_tvalid),
.input_axis_tready(tx_axis_tready),
.input_axis_tlast(tx_axis_tlast),
.input_axis_tid(0),
.input_axis_tdest(0),
.input_axis_tuser(tx_axis_tuser),
// AXI output
.output_clk(tx_clk),
.output_axis_tdata(tx_fifo_axis_tdata),
.output_axis_tvalid(tx_fifo_axis_tvalid),
.output_axis_tready(tx_fifo_axis_tready),
.output_axis_tlast(tx_fifo_axis_tlast),
.output_axis_tid(),
.output_axis_tdest(),
.output_axis_tuser(),
// Status
.input_status_overflow(tx_fifo_overflow),
.input_status_bad_frame(tx_fifo_bad_frame),
.input_status_good_frame(tx_fifo_good_frame),
.output_status_overflow(),
.output_status_bad_frame(),
.output_status_good_frame()
);
assign tx_fifo_axis_tuser = 1'b0;
axis_async_frame_fifo #(
.ADDR_WIDTH(RX_FIFO_ADDR_WIDTH),
.DATA_WIDTH(8),
.KEEP_ENABLE(0),
.ID_ENABLE(0),
.DEST_ENABLE(0),
.USER_ENABLE(1),
.USER_WIDTH(1),
.USER_BAD_FRAME_VALUE(1'b1),
.USER_BAD_FRAME_MASK(1'b1),
.DROP_BAD_FRAME(1),
.DROP_WHEN_FULL(1)
)
rx_fifo (
// Common reset
.async_rst(rx_rst | logic_rst),
// AXI input
.input_clk(rx_clk),
.input_axis_tdata(rx_fifo_axis_tdata),
.input_axis_tvalid(rx_fifo_axis_tvalid),
.input_axis_tready(),
.input_axis_tlast(rx_fifo_axis_tlast),
.input_axis_tid(0),
.input_axis_tdest(0),
.input_axis_tuser(rx_fifo_axis_tuser),
// AXI output
.output_clk(logic_clk),
.output_axis_tdata(rx_axis_tdata),
.output_axis_tvalid(rx_axis_tvalid),
.output_axis_tready(rx_axis_tready),
.output_axis_tlast(rx_axis_tlast),
.output_axis_tid(),
.output_axis_tdest(),
.output_axis_tuser(),
// Status
.input_status_overflow(),
.input_status_bad_frame(),
.input_status_good_frame(),
.output_status_overflow(rx_fifo_overflow),
.output_status_bad_frame(rx_fifo_bad_frame),
.output_status_good_frame(rx_fifo_good_frame)
);
assign rx_axis_tuser = 1'b0;
endmodule