mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
518 lines
21 KiB
Verilog
518 lines
21 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2018 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`timescale 1ns / 1ps
|
|
|
|
/*
|
|
* AXI4 lite interconnect
|
|
*/
|
|
module axil_interconnect #
|
|
(
|
|
// Number of AXI inputs (slave interfaces)
|
|
parameter S_COUNT = 4,
|
|
// Number of AXI outputs (master interfaces)
|
|
parameter M_COUNT = 4,
|
|
// Width of data bus in bits
|
|
parameter DATA_WIDTH = 32,
|
|
// Width of address bus in bits
|
|
parameter ADDR_WIDTH = 32,
|
|
// Width of wstrb (width of data bus in words)
|
|
parameter STRB_WIDTH = (DATA_WIDTH/8),
|
|
// Number of regions per master interface
|
|
parameter M_REGIONS = 1,
|
|
// Master interface base addresses
|
|
// M_COUNT concatenated fields of M_REGIONS concatenated fields of ADDR_WIDTH bits
|
|
// set to zero for default addressing based on M_ADDR_WIDTH
|
|
parameter M_BASE_ADDR = 0,
|
|
// Master interface address widths
|
|
// M_COUNT concatenated fields of M_REGIONS concatenated fields of 32 bits
|
|
parameter M_ADDR_WIDTH = {M_COUNT{{M_REGIONS{32'd24}}}},
|
|
// Read connections between interfaces
|
|
// M_COUNT concatenated fields of S_COUNT bits
|
|
parameter M_CONNECT_READ = {M_COUNT{{S_COUNT{1'b1}}}},
|
|
// Write connections between interfaces
|
|
// M_COUNT concatenated fields of S_COUNT bits
|
|
parameter M_CONNECT_WRITE = {M_COUNT{{S_COUNT{1'b1}}}},
|
|
// Secure master (fail operations based on awprot/arprot)
|
|
// M_COUNT bits
|
|
parameter M_SECURE = {M_COUNT{1'b0}}
|
|
)
|
|
(
|
|
input wire clk,
|
|
input wire rst,
|
|
|
|
/*
|
|
* AXI lite slave interfaces
|
|
*/
|
|
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axil_awaddr,
|
|
input wire [S_COUNT*3-1:0] s_axil_awprot,
|
|
input wire [S_COUNT-1:0] s_axil_awvalid,
|
|
output wire [S_COUNT-1:0] s_axil_awready,
|
|
input wire [S_COUNT*DATA_WIDTH-1:0] s_axil_wdata,
|
|
input wire [S_COUNT*STRB_WIDTH-1:0] s_axil_wstrb,
|
|
input wire [S_COUNT-1:0] s_axil_wvalid,
|
|
output wire [S_COUNT-1:0] s_axil_wready,
|
|
output wire [S_COUNT*2-1:0] s_axil_bresp,
|
|
output wire [S_COUNT-1:0] s_axil_bvalid,
|
|
input wire [S_COUNT-1:0] s_axil_bready,
|
|
input wire [S_COUNT*ADDR_WIDTH-1:0] s_axil_araddr,
|
|
input wire [S_COUNT*3-1:0] s_axil_arprot,
|
|
input wire [S_COUNT-1:0] s_axil_arvalid,
|
|
output wire [S_COUNT-1:0] s_axil_arready,
|
|
output wire [S_COUNT*DATA_WIDTH-1:0] s_axil_rdata,
|
|
output wire [S_COUNT*2-1:0] s_axil_rresp,
|
|
output wire [S_COUNT-1:0] s_axil_rvalid,
|
|
input wire [S_COUNT-1:0] s_axil_rready,
|
|
|
|
/*
|
|
* AXI lite master interfaces
|
|
*/
|
|
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axil_awaddr,
|
|
output wire [M_COUNT*3-1:0] m_axil_awprot,
|
|
output wire [M_COUNT-1:0] m_axil_awvalid,
|
|
input wire [M_COUNT-1:0] m_axil_awready,
|
|
output wire [M_COUNT*DATA_WIDTH-1:0] m_axil_wdata,
|
|
output wire [M_COUNT*STRB_WIDTH-1:0] m_axil_wstrb,
|
|
output wire [M_COUNT-1:0] m_axil_wvalid,
|
|
input wire [M_COUNT-1:0] m_axil_wready,
|
|
input wire [M_COUNT*2-1:0] m_axil_bresp,
|
|
input wire [M_COUNT-1:0] m_axil_bvalid,
|
|
output wire [M_COUNT-1:0] m_axil_bready,
|
|
output wire [M_COUNT*ADDR_WIDTH-1:0] m_axil_araddr,
|
|
output wire [M_COUNT*3-1:0] m_axil_arprot,
|
|
output wire [M_COUNT-1:0] m_axil_arvalid,
|
|
input wire [M_COUNT-1:0] m_axil_arready,
|
|
input wire [M_COUNT*DATA_WIDTH-1:0] m_axil_rdata,
|
|
input wire [M_COUNT*2-1:0] m_axil_rresp,
|
|
input wire [M_COUNT-1:0] m_axil_rvalid,
|
|
output wire [M_COUNT-1:0] m_axil_rready
|
|
);
|
|
|
|
parameter CL_S_COUNT = $clog2(S_COUNT);
|
|
parameter CL_M_COUNT = $clog2(M_COUNT);
|
|
|
|
// default address computation
|
|
function [M_COUNT*M_REGIONS*ADDR_WIDTH-1:0] calcBaseAddrs(input [31:0] dummy);
|
|
integer i;
|
|
reg [ADDR_WIDTH-1:0] base;
|
|
begin
|
|
calcBaseAddrs = {M_COUNT*M_REGIONS*ADDR_WIDTH{1'b0}};
|
|
base = 0;
|
|
for (i = 1; i < M_COUNT*M_REGIONS; i = i + 1) begin
|
|
if (M_ADDR_WIDTH[i*32 +: 32]) begin
|
|
base = base + 2**M_ADDR_WIDTH[(i-1)*32 +: 32]; // increment
|
|
base = base - (base % 2**M_ADDR_WIDTH[i*32 +: 32]); // align
|
|
calcBaseAddrs[i * ADDR_WIDTH +: ADDR_WIDTH] = base;
|
|
end
|
|
end
|
|
end
|
|
endfunction
|
|
|
|
parameter M_BASE_ADDR_INT = M_BASE_ADDR ? M_BASE_ADDR : calcBaseAddrs(0);
|
|
|
|
integer i, j;
|
|
|
|
// check configuration
|
|
initial begin
|
|
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
|
|
if (M_ADDR_WIDTH[i*32 +: 32] && (M_ADDR_WIDTH[i*32 +: 32] < 0 || M_ADDR_WIDTH[i*32 +: 32] > ADDR_WIDTH)) begin
|
|
$error("Error: address width out of range (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
$display("Addressing configuration for axil_interconnect instance %m");
|
|
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
|
|
if (M_ADDR_WIDTH[i*32 +: 32]) begin
|
|
$display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32])));
|
|
end
|
|
end
|
|
|
|
for (i = 0; i < M_COUNT*M_REGIONS; i = i + 1) begin
|
|
for (j = i+1; j < M_COUNT*M_REGIONS; j = j + 1) begin
|
|
if (M_ADDR_WIDTH[i*32 +: 32] && M_ADDR_WIDTH[j*32 +: 32]) begin
|
|
if (((M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32])) <= (M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32])))) && ((M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32])) <= (M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32]))))) begin
|
|
$display("Overlapping regions:");
|
|
$display("%2d (%2d): %x / %2d -- %x-%x", i/M_REGIONS, i%M_REGIONS, M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[i*32 +: 32], M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[i*32 +: 32]), M_BASE_ADDR_INT[i*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[i*32 +: 32])));
|
|
$display("%2d (%2d): %x / %2d -- %x-%x", j/M_REGIONS, j%M_REGIONS, M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH], M_ADDR_WIDTH[j*32 +: 32], M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] & ({ADDR_WIDTH{1'b1}} << M_ADDR_WIDTH[j*32 +: 32]), M_BASE_ADDR_INT[j*ADDR_WIDTH +: ADDR_WIDTH] | ({ADDR_WIDTH{1'b1}} >> (ADDR_WIDTH - M_ADDR_WIDTH[j*32 +: 32])));
|
|
$error("Error: address ranges overlap (instance %m)");
|
|
$finish;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
localparam [2:0]
|
|
STATE_IDLE = 3'd0,
|
|
STATE_DECODE = 3'd1,
|
|
STATE_WRITE = 3'd2,
|
|
STATE_WRITE_RESP = 3'd3,
|
|
STATE_WRITE_DROP = 3'd4,
|
|
STATE_READ = 3'd5,
|
|
STATE_WAIT_IDLE = 3'd6;
|
|
|
|
reg [2:0] state_reg = STATE_IDLE, state_next;
|
|
|
|
reg match;
|
|
|
|
reg [CL_M_COUNT-1:0] m_select_reg = 2'd0, m_select_next;
|
|
reg [ADDR_WIDTH-1:0] axil_addr_reg = {ADDR_WIDTH{1'b0}}, axil_addr_next;
|
|
reg axil_addr_valid_reg = 1'b0, axil_addr_valid_next;
|
|
reg [2:0] axil_prot_reg = 3'b000, axil_prot_next;
|
|
reg [DATA_WIDTH-1:0] axil_data_reg = {DATA_WIDTH{1'b0}}, axil_data_next;
|
|
reg [STRB_WIDTH-1:0] axil_wstrb_reg = {STRB_WIDTH{1'b0}}, axil_wstrb_next;
|
|
reg [1:0] axil_resp_reg = 2'b00, axil_resp_next;
|
|
|
|
reg [S_COUNT-1:0] s_axil_awready_reg = 0, s_axil_awready_next;
|
|
reg [S_COUNT-1:0] s_axil_wready_reg = 0, s_axil_wready_next;
|
|
reg [S_COUNT-1:0] s_axil_bvalid_reg = 0, s_axil_bvalid_next;
|
|
reg [S_COUNT-1:0] s_axil_arready_reg = 0, s_axil_arready_next;
|
|
reg [S_COUNT-1:0] s_axil_rvalid_reg = 0, s_axil_rvalid_next;
|
|
|
|
reg [M_COUNT-1:0] m_axil_awvalid_reg = 0, m_axil_awvalid_next;
|
|
reg [M_COUNT-1:0] m_axil_wvalid_reg = 0, m_axil_wvalid_next;
|
|
reg [M_COUNT-1:0] m_axil_bready_reg = 0, m_axil_bready_next;
|
|
reg [M_COUNT-1:0] m_axil_arvalid_reg = 0, m_axil_arvalid_next;
|
|
reg [M_COUNT-1:0] m_axil_rready_reg = 0, m_axil_rready_next;
|
|
|
|
assign s_axil_awready = s_axil_awready_reg;
|
|
assign s_axil_wready = s_axil_wready_reg;
|
|
assign s_axil_bresp = {S_COUNT{axil_resp_reg}};
|
|
assign s_axil_bvalid = s_axil_bvalid_reg;
|
|
assign s_axil_arready = s_axil_arready_reg;
|
|
assign s_axil_rdata = {S_COUNT{axil_data_reg}};
|
|
assign s_axil_rresp = {S_COUNT{axil_resp_reg}};
|
|
assign s_axil_rvalid = s_axil_rvalid_reg;
|
|
|
|
assign m_axil_awaddr = {M_COUNT{axil_addr_reg}};
|
|
assign m_axil_awprot = {M_COUNT{axil_prot_reg}};
|
|
assign m_axil_awvalid = m_axil_awvalid_reg;
|
|
assign m_axil_wdata = {M_COUNT{axil_data_reg}};
|
|
assign m_axil_wstrb = {M_COUNT{axil_wstrb_reg}};
|
|
assign m_axil_wvalid = m_axil_wvalid_reg;
|
|
assign m_axil_bready = m_axil_bready_reg;
|
|
assign m_axil_araddr = {M_COUNT{axil_addr_reg}};
|
|
assign m_axil_arprot = {M_COUNT{axil_prot_reg}};
|
|
assign m_axil_arvalid = m_axil_arvalid_reg;
|
|
assign m_axil_rready = m_axil_rready_reg;
|
|
|
|
// slave side mux
|
|
wire [(CL_S_COUNT > 0 ? CL_S_COUNT-1 : 0):0] s_select;
|
|
|
|
wire [ADDR_WIDTH-1:0] current_s_axil_awaddr = s_axil_awaddr[s_select*ADDR_WIDTH +: ADDR_WIDTH];
|
|
wire [2:0] current_s_axil_awprot = s_axil_awprot[s_select*3 +: 3];
|
|
wire current_s_axil_awvalid = s_axil_awvalid[s_select];
|
|
wire current_s_axil_awready = s_axil_awready[s_select];
|
|
wire [DATA_WIDTH-1:0] current_s_axil_wdata = s_axil_wdata[s_select*DATA_WIDTH +: DATA_WIDTH];
|
|
wire [STRB_WIDTH-1:0] current_s_axil_wstrb = s_axil_wstrb[s_select*STRB_WIDTH +: STRB_WIDTH];
|
|
wire current_s_axil_wvalid = s_axil_wvalid[s_select];
|
|
wire current_s_axil_wready = s_axil_wready[s_select];
|
|
wire [1:0] current_s_axil_bresp = s_axil_bresp[s_select*2 +: 2];
|
|
wire current_s_axil_bvalid = s_axil_bvalid[s_select];
|
|
wire current_s_axil_bready = s_axil_bready[s_select];
|
|
wire [ADDR_WIDTH-1:0] current_s_axil_araddr = s_axil_araddr[s_select*ADDR_WIDTH +: ADDR_WIDTH];
|
|
wire [2:0] current_s_axil_arprot = s_axil_arprot[s_select*3 +: 3];
|
|
wire current_s_axil_arvalid = s_axil_arvalid[s_select];
|
|
wire current_s_axil_arready = s_axil_arready[s_select];
|
|
wire [DATA_WIDTH-1:0] current_s_axil_rdata = s_axil_rdata[s_select*DATA_WIDTH +: DATA_WIDTH];
|
|
wire [1:0] current_s_axil_rresp = s_axil_rresp[s_select*2 +: 2];
|
|
wire current_s_axil_rvalid = s_axil_rvalid[s_select];
|
|
wire current_s_axil_rready = s_axil_rready[s_select];
|
|
|
|
// master side mux
|
|
wire [ADDR_WIDTH-1:0] current_m_axil_awaddr = m_axil_awaddr[m_select_reg*ADDR_WIDTH +: ADDR_WIDTH];
|
|
wire [2:0] current_m_axil_awprot = m_axil_awprot[m_select_reg*3 +: 3];
|
|
wire current_m_axil_awvalid = m_axil_awvalid[m_select_reg];
|
|
wire current_m_axil_awready = m_axil_awready[m_select_reg];
|
|
wire [DATA_WIDTH-1:0] current_m_axil_wdata = m_axil_wdata[m_select_reg*DATA_WIDTH +: DATA_WIDTH];
|
|
wire [STRB_WIDTH-1:0] current_m_axil_wstrb = m_axil_wstrb[m_select_reg*STRB_WIDTH +: STRB_WIDTH];
|
|
wire current_m_axil_wvalid = m_axil_wvalid[m_select_reg];
|
|
wire current_m_axil_wready = m_axil_wready[m_select_reg];
|
|
wire [1:0] current_m_axil_bresp = m_axil_bresp[m_select_reg*2 +: 2];
|
|
wire current_m_axil_bvalid = m_axil_bvalid[m_select_reg];
|
|
wire current_m_axil_bready = m_axil_bready[m_select_reg];
|
|
wire [ADDR_WIDTH-1:0] current_m_axil_araddr = m_axil_araddr[m_select_reg*ADDR_WIDTH +: ADDR_WIDTH];
|
|
wire [2:0] current_m_axil_arprot = m_axil_arprot[m_select_reg*3 +: 3];
|
|
wire current_m_axil_arvalid = m_axil_arvalid[m_select_reg];
|
|
wire current_m_axil_arready = m_axil_arready[m_select_reg];
|
|
wire [DATA_WIDTH-1:0] current_m_axil_rdata = m_axil_rdata[m_select_reg*DATA_WIDTH +: DATA_WIDTH];
|
|
wire [1:0] current_m_axil_rresp = m_axil_rresp[m_select_reg*2 +: 2];
|
|
wire current_m_axil_rvalid = m_axil_rvalid[m_select_reg];
|
|
wire current_m_axil_rready = m_axil_rready[m_select_reg];
|
|
|
|
// arbiter instance
|
|
wire [S_COUNT*2-1:0] request;
|
|
wire [S_COUNT*2-1:0] acknowledge;
|
|
wire [S_COUNT*2-1:0] grant;
|
|
wire grant_valid;
|
|
wire [CL_S_COUNT:0] grant_encoded;
|
|
|
|
wire read = grant_encoded[0];
|
|
assign s_select = grant_encoded >> 1;
|
|
|
|
arbiter #(
|
|
.PORTS(S_COUNT*2),
|
|
.TYPE("ROUND_ROBIN"),
|
|
.BLOCK("ACKNOWLEDGE"),
|
|
.LSB_PRIORITY("HIGH")
|
|
)
|
|
arb_inst (
|
|
.clk(clk),
|
|
.rst(rst),
|
|
.request(request),
|
|
.acknowledge(acknowledge),
|
|
.grant(grant),
|
|
.grant_valid(grant_valid),
|
|
.grant_encoded(grant_encoded)
|
|
);
|
|
|
|
genvar n;
|
|
|
|
// request generation
|
|
generate
|
|
for (n = 0; n < S_COUNT; n = n + 1) begin
|
|
assign request[2*n] = s_axil_awvalid[n];
|
|
assign request[2*n+1] = s_axil_arvalid[n];
|
|
end
|
|
endgenerate
|
|
|
|
// acknowledge generation
|
|
generate
|
|
for (n = 0; n < S_COUNT; n = n + 1) begin
|
|
assign acknowledge[2*n] = grant[2*n] && s_axil_bvalid[n] && s_axil_bready[n];
|
|
assign acknowledge[2*n+1] = grant[2*n+1] && s_axil_rvalid[n] && s_axil_rready[n];
|
|
end
|
|
endgenerate
|
|
|
|
always @* begin
|
|
state_next = STATE_IDLE;
|
|
|
|
match = 1'b0;
|
|
|
|
m_select_next = m_select_reg;
|
|
axil_addr_next = axil_addr_reg;
|
|
axil_addr_valid_next = axil_addr_valid_reg;
|
|
axil_prot_next = axil_prot_reg;
|
|
axil_data_next = axil_data_reg;
|
|
axil_wstrb_next = axil_wstrb_reg;
|
|
axil_resp_next = axil_resp_reg;
|
|
|
|
s_axil_awready_next = 0;
|
|
s_axil_wready_next = 0;
|
|
s_axil_bvalid_next = s_axil_bvalid_reg & ~s_axil_bready;
|
|
s_axil_arready_next = 0;
|
|
s_axil_rvalid_next = s_axil_rvalid_reg & ~s_axil_rready;
|
|
|
|
m_axil_awvalid_next = m_axil_awvalid_reg & ~m_axil_awready;
|
|
m_axil_wvalid_next = m_axil_wvalid_reg & ~m_axil_wready;
|
|
m_axil_bready_next = 0;
|
|
m_axil_arvalid_next = m_axil_arvalid_reg & ~m_axil_arready;
|
|
m_axil_rready_next = 0;
|
|
|
|
case (state_reg)
|
|
STATE_IDLE: begin
|
|
// idle state; wait for arbitration
|
|
|
|
if (grant_valid) begin
|
|
|
|
axil_addr_valid_next = 1'b1;
|
|
|
|
if (read) begin
|
|
// reading
|
|
axil_addr_next = current_s_axil_araddr;
|
|
axil_prot_next = current_s_axil_arprot;
|
|
s_axil_arready_next[s_select] = 1'b1;
|
|
end else begin
|
|
// writing
|
|
axil_addr_next = current_s_axil_awaddr;
|
|
axil_prot_next = current_s_axil_awprot;
|
|
s_axil_awready_next[s_select] = 1'b1;
|
|
end
|
|
|
|
state_next = STATE_DECODE;
|
|
end else begin
|
|
state_next = STATE_IDLE;
|
|
end
|
|
end
|
|
STATE_DECODE: begin
|
|
// decode state; determine master interface
|
|
|
|
match = 1'b0;
|
|
for (i = 0; i < M_COUNT; i = i + 1) begin
|
|
for (j = 0; j < M_REGIONS; j = j + 1) begin
|
|
if (M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32] && (!M_SECURE[i] || !axil_prot_reg[1]) && ((read ? M_CONNECT_READ : M_CONNECT_WRITE) & (1 << (s_select+i*S_COUNT))) && (axil_addr_reg >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32]) == (M_BASE_ADDR_INT[(i*M_REGIONS+j)*ADDR_WIDTH +: ADDR_WIDTH] >> M_ADDR_WIDTH[(i*M_REGIONS+j)*32 +: 32])) begin
|
|
m_select_next = i;
|
|
match = 1'b1;
|
|
end
|
|
end
|
|
end
|
|
|
|
if (match) begin
|
|
if (read) begin
|
|
// reading
|
|
m_axil_rready_next[m_select_next] = 1'b1;
|
|
state_next = STATE_READ;
|
|
end else begin
|
|
// writing
|
|
s_axil_wready_next[s_select] = 1'b1;
|
|
state_next = STATE_WRITE;
|
|
end
|
|
end else begin
|
|
// no match; return decode error
|
|
axil_data_next = {DATA_WIDTH{1'b0}};
|
|
axil_resp_next = 2'b11;
|
|
if (read) begin
|
|
// reading
|
|
s_axil_rvalid_next[s_select] = 1'b1;
|
|
state_next = STATE_WAIT_IDLE;
|
|
end else begin
|
|
// writing
|
|
s_axil_wready_next[s_select] = 1'b1;
|
|
state_next = STATE_WRITE_DROP;
|
|
end
|
|
end
|
|
end
|
|
STATE_WRITE: begin
|
|
// write state; store and forward write data
|
|
s_axil_wready_next[s_select] = 1'b1;
|
|
|
|
if (axil_addr_valid_reg) begin
|
|
m_axil_awvalid_next[m_select_reg] = 1'b1;
|
|
end
|
|
axil_addr_valid_next = 1'b0;
|
|
|
|
if (current_s_axil_wready && current_s_axil_wvalid) begin
|
|
s_axil_wready_next[s_select] = 1'b0;
|
|
axil_data_next = current_s_axil_wdata;
|
|
axil_wstrb_next = current_s_axil_wstrb;
|
|
m_axil_wvalid_next[m_select_reg] = 1'b1;
|
|
m_axil_bready_next[m_select_reg] = 1'b1;
|
|
state_next = STATE_WRITE_RESP;
|
|
end else begin
|
|
state_next = STATE_WRITE;
|
|
end
|
|
end
|
|
STATE_WRITE_RESP: begin
|
|
// write response state; store and forward write response
|
|
m_axil_bready_next[m_select_reg] = 1'b1;
|
|
|
|
if (current_m_axil_bready && current_m_axil_bvalid) begin
|
|
m_axil_bready_next[m_select_reg] = 1'b0;
|
|
axil_resp_next = current_m_axil_bresp;
|
|
s_axil_bvalid_next[s_select] = 1'b1;
|
|
state_next = STATE_WAIT_IDLE;
|
|
end else begin
|
|
state_next = STATE_WRITE_RESP;
|
|
end
|
|
end
|
|
STATE_WRITE_DROP: begin
|
|
// write drop state; drop write data
|
|
s_axil_wready_next[s_select] = 1'b1;
|
|
|
|
axil_addr_valid_next = 1'b0;
|
|
|
|
if (current_s_axil_wready && current_s_axil_wvalid) begin
|
|
s_axil_wready_next[s_select] = 1'b0;
|
|
s_axil_bvalid_next[s_select] = 1'b1;
|
|
state_next = STATE_WAIT_IDLE;
|
|
end else begin
|
|
state_next = STATE_WRITE_DROP;
|
|
end
|
|
end
|
|
STATE_READ: begin
|
|
// read state; store and forward read response
|
|
m_axil_rready_next[m_select_reg] = 1'b1;
|
|
|
|
if (axil_addr_valid_reg) begin
|
|
m_axil_arvalid_next[m_select_reg] = 1'b1;
|
|
end
|
|
axil_addr_valid_next = 1'b0;
|
|
|
|
if (current_m_axil_rready && current_m_axil_rvalid) begin
|
|
m_axil_rready_next[m_select_reg] = 1'b0;
|
|
axil_data_next = current_m_axil_rdata;
|
|
axil_resp_next = current_m_axil_rresp;
|
|
s_axil_rvalid_next[s_select] = 1'b1;
|
|
state_next = STATE_WAIT_IDLE;
|
|
end else begin
|
|
state_next = STATE_READ;
|
|
end
|
|
end
|
|
STATE_WAIT_IDLE: begin
|
|
// wait for idle state; wait untl grant valid is deasserted
|
|
|
|
if (!grant_valid || acknowledge) begin
|
|
state_next = STATE_IDLE;
|
|
end else begin
|
|
state_next = STATE_WAIT_IDLE;
|
|
end
|
|
end
|
|
endcase
|
|
end
|
|
|
|
always @(posedge clk) begin
|
|
if (rst) begin
|
|
state_reg <= STATE_IDLE;
|
|
|
|
s_axil_awready_reg <= 0;
|
|
s_axil_wready_reg <= 0;
|
|
s_axil_bvalid_reg <= 0;
|
|
s_axil_arready_reg <= 0;
|
|
s_axil_rvalid_reg <= 0;
|
|
|
|
m_axil_awvalid_reg <= 0;
|
|
m_axil_wvalid_reg <= 0;
|
|
m_axil_bready_reg <= 0;
|
|
m_axil_arvalid_reg <= 0;
|
|
m_axil_rready_reg <= 0;
|
|
end else begin
|
|
state_reg <= state_next;
|
|
|
|
s_axil_awready_reg <= s_axil_awready_next;
|
|
s_axil_wready_reg <= s_axil_wready_next;
|
|
s_axil_bvalid_reg <= s_axil_bvalid_next;
|
|
s_axil_arready_reg <= s_axil_arready_next;
|
|
s_axil_rvalid_reg <= s_axil_rvalid_next;
|
|
|
|
m_axil_awvalid_reg <= m_axil_awvalid_next;
|
|
m_axil_wvalid_reg <= m_axil_wvalid_next;
|
|
m_axil_bready_reg <= m_axil_bready_next;
|
|
m_axil_arvalid_reg <= m_axil_arvalid_next;
|
|
m_axil_rready_reg <= m_axil_rready_next;
|
|
end
|
|
|
|
m_select_reg <= m_select_next;
|
|
axil_addr_reg <= axil_addr_next;
|
|
axil_addr_valid_reg <= axil_addr_valid_next;
|
|
axil_prot_reg <= axil_prot_next;
|
|
axil_data_reg <= axil_data_next;
|
|
axil_wstrb_reg <= axil_wstrb_next;
|
|
axil_resp_reg <= axil_resp_next;
|
|
end
|
|
|
|
endmodule
|