1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/dma_if_desc_mux.v
2021-09-09 00:58:48 -07:00

302 lines
12 KiB
Verilog

/*
Copyright (c) 2019-2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* DMA interface descriptor mux
*/
module dma_if_desc_mux #
(
// Number of ports
parameter PORTS = 2,
// Extend RAM select signal
parameter EXTEND_RAM_SEL = 0,
// Input RAM segment select width
parameter S_RAM_SEL_WIDTH = 2,
// Output RAM segment select width
// Additional bits required for response routing
parameter M_RAM_SEL_WIDTH = S_RAM_SEL_WIDTH+(EXTEND_RAM_SEL ? $clog2(PORTS) : 0),
// RAM address width
parameter RAM_ADDR_WIDTH = 16,
// DMA address width
parameter DMA_ADDR_WIDTH = 64,
// Length field width
parameter LEN_WIDTH = 16,
// Input tag field width
parameter S_TAG_WIDTH = 8,
// Output tag field width (towards DMA interface module)
// Additional bits required for response routing
parameter M_TAG_WIDTH = S_TAG_WIDTH+$clog2(PORTS),
// select round robin arbitration
parameter ARB_TYPE_ROUND_ROBIN = 0,
// LSB priority selection
parameter ARB_LSB_HIGH_PRIORITY = 1
)
(
input wire clk,
input wire rst,
/*
* Read descriptor output (to DMA interface)
*/
output wire [DMA_ADDR_WIDTH-1:0] m_axis_desc_dma_addr,
output wire [M_RAM_SEL_WIDTH-1:0] m_axis_desc_ram_sel,
output wire [RAM_ADDR_WIDTH-1:0] m_axis_desc_ram_addr,
output wire [LEN_WIDTH-1:0] m_axis_desc_len,
output wire [M_TAG_WIDTH-1:0] m_axis_desc_tag,
output wire m_axis_desc_valid,
input wire m_axis_desc_ready,
/*
* Read descriptor status input (from DMA interface)
*/
input wire [M_TAG_WIDTH-1:0] s_axis_desc_status_tag,
input wire [3:0] s_axis_desc_status_error,
input wire s_axis_desc_status_valid,
/*
* Read descriptor input
*/
input wire [PORTS*DMA_ADDR_WIDTH-1:0] s_axis_desc_dma_addr,
input wire [PORTS*S_RAM_SEL_WIDTH-1:0] s_axis_desc_ram_sel,
input wire [PORTS*RAM_ADDR_WIDTH-1:0] s_axis_desc_ram_addr,
input wire [PORTS*LEN_WIDTH-1:0] s_axis_desc_len,
input wire [PORTS*S_TAG_WIDTH-1:0] s_axis_desc_tag,
input wire [PORTS-1:0] s_axis_desc_valid,
output wire [PORTS-1:0] s_axis_desc_ready,
/*
* Read descriptor status output
*/
output wire [PORTS*S_TAG_WIDTH-1:0] m_axis_desc_status_tag,
output wire [PORTS*4-1:0] m_axis_desc_status_error,
output wire [PORTS-1:0] m_axis_desc_status_valid
);
parameter CL_PORTS = $clog2(PORTS);
parameter S_RAM_SEL_WIDTH_INT = S_RAM_SEL_WIDTH > 0 ? S_RAM_SEL_WIDTH : 1;
parameter FIFO_ADDR_WIDTH = 5;
// check configuration
initial begin
if (M_TAG_WIDTH < S_TAG_WIDTH+$clog2(PORTS)) begin
$error("Error: M_TAG_WIDTH must be at least $clog2(PORTS) larger than S_TAG_WIDTH (instance %m)");
$finish;
end
if (EXTEND_RAM_SEL) begin
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH+$clog2(PORTS)) begin
$error("Error: M_RAM_SEL_WIDTH must be at least $clog2(PORTS) larger than S_RAM_SEL_WIDTH (instance %m)");
$finish;
end
end else begin
if (M_RAM_SEL_WIDTH < S_RAM_SEL_WIDTH) begin
$error("Error: M_RAM_SEL_WIDTH must be no smaller than S_RAM_SEL_WIDTH (instance %m)");
$finish;
end
end
end
// descriptor mux
wire [PORTS-1:0] request;
wire [PORTS-1:0] acknowledge;
wire [PORTS-1:0] grant;
wire grant_valid;
wire [CL_PORTS-1:0] grant_encoded;
// internal datapath
reg [DMA_ADDR_WIDTH-1:0] m_axis_desc_dma_addr_int;
reg [M_RAM_SEL_WIDTH-1:0] m_axis_desc_ram_sel_int;
reg [RAM_ADDR_WIDTH-1:0] m_axis_desc_ram_addr_int;
reg [LEN_WIDTH-1:0] m_axis_desc_len_int;
reg [M_TAG_WIDTH-1:0] m_axis_desc_tag_int;
reg m_axis_desc_valid_int;
reg m_axis_desc_ready_int_reg = 1'b0;
wire m_axis_desc_ready_int_early;
assign s_axis_desc_ready = (m_axis_desc_ready_int_reg && grant_valid) << grant_encoded;
// mux for incoming packet
wire [DMA_ADDR_WIDTH-1:0] current_s_desc_dma_addr = s_axis_desc_dma_addr[grant_encoded*DMA_ADDR_WIDTH +: DMA_ADDR_WIDTH];
wire [S_RAM_SEL_WIDTH-1:0] current_s_desc_ram_sel = s_axis_desc_ram_sel[grant_encoded*S_RAM_SEL_WIDTH +: S_RAM_SEL_WIDTH_INT];
wire [RAM_ADDR_WIDTH-1:0] current_s_desc_ram_addr = s_axis_desc_ram_addr[grant_encoded*RAM_ADDR_WIDTH +: RAM_ADDR_WIDTH];
wire [LEN_WIDTH-1:0] current_s_desc_len = s_axis_desc_len[grant_encoded*LEN_WIDTH +: LEN_WIDTH];
wire [S_TAG_WIDTH-1:0] current_s_desc_tag = s_axis_desc_tag[grant_encoded*S_TAG_WIDTH +: S_TAG_WIDTH];
wire current_s_desc_valid = s_axis_desc_valid[grant_encoded];
wire current_s_desc_ready = s_axis_desc_ready[grant_encoded];
// arbiter instance
arbiter #(
.PORTS(PORTS),
.ARB_TYPE_ROUND_ROBIN(ARB_TYPE_ROUND_ROBIN),
.ARB_BLOCK(1),
.ARB_BLOCK_ACK(1),
.ARB_LSB_HIGH_PRIORITY(ARB_LSB_HIGH_PRIORITY)
)
arb_inst (
.clk(clk),
.rst(rst),
.request(request),
.acknowledge(acknowledge),
.grant(grant),
.grant_valid(grant_valid),
.grant_encoded(grant_encoded)
);
assign request = s_axis_desc_valid & ~grant;
assign acknowledge = grant & s_axis_desc_valid & s_axis_desc_ready;
always @* begin
// pass through selected packet data
m_axis_desc_dma_addr_int = current_s_desc_dma_addr;
if (S_RAM_SEL_WIDTH > 0) begin
m_axis_desc_ram_sel_int = {grant_encoded, current_s_desc_ram_sel};
end else begin
m_axis_desc_ram_sel_int = grant_encoded;
end
m_axis_desc_ram_addr_int = current_s_desc_ram_addr;
m_axis_desc_len_int = current_s_desc_len;
m_axis_desc_tag_int = {grant_encoded, current_s_desc_tag};
m_axis_desc_valid_int = current_s_desc_valid && m_axis_desc_ready_int_reg && grant_valid;
end
// output datapath logic
reg [DMA_ADDR_WIDTH-1:0] m_axis_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
reg [M_RAM_SEL_WIDTH-1:0] m_axis_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
reg [RAM_ADDR_WIDTH-1:0] m_axis_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] m_axis_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] m_axis_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg m_axis_desc_valid_reg = 1'b0, m_axis_desc_valid_next;
reg [DMA_ADDR_WIDTH-1:0] temp_m_axis_desc_dma_addr_reg = {DMA_ADDR_WIDTH{1'b0}};
reg [M_RAM_SEL_WIDTH-1:0] temp_m_axis_desc_ram_sel_reg = {M_RAM_SEL_WIDTH{1'b0}};
reg [RAM_ADDR_WIDTH-1:0] temp_m_axis_desc_ram_addr_reg = {RAM_ADDR_WIDTH{1'b0}};
reg [LEN_WIDTH-1:0] temp_m_axis_desc_len_reg = {LEN_WIDTH{1'b0}};
reg [M_TAG_WIDTH-1:0] temp_m_axis_desc_tag_reg = {M_TAG_WIDTH{1'b0}};
reg temp_m_axis_desc_valid_reg = 1'b0, temp_m_axis_desc_valid_next;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_desc_dma_addr = m_axis_desc_dma_addr_reg;
assign m_axis_desc_ram_sel = m_axis_desc_ram_sel_reg;
assign m_axis_desc_ram_addr = m_axis_desc_ram_addr_reg;
assign m_axis_desc_len = m_axis_desc_len_reg;
assign m_axis_desc_tag = m_axis_desc_tag_reg;
assign m_axis_desc_valid = m_axis_desc_valid_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_desc_ready_int_early = m_axis_desc_ready || (!temp_m_axis_desc_valid_reg && (!m_axis_desc_valid_reg || !m_axis_desc_valid_int));
always @* begin
// transfer sink ready state to source
m_axis_desc_valid_next = m_axis_desc_valid_reg;
temp_m_axis_desc_valid_next = temp_m_axis_desc_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_desc_ready_int_reg) begin
// input is ready
if (m_axis_desc_ready || !m_axis_desc_valid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_desc_valid_next = m_axis_desc_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_desc_valid_next = m_axis_desc_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_desc_ready) begin
// input is not ready, but output is ready
m_axis_desc_valid_next = temp_m_axis_desc_valid_reg;
temp_m_axis_desc_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_desc_valid_reg <= 1'b0;
m_axis_desc_ready_int_reg <= 1'b0;
temp_m_axis_desc_valid_reg <= 1'b0;
end else begin
m_axis_desc_valid_reg <= m_axis_desc_valid_next;
m_axis_desc_ready_int_reg <= m_axis_desc_ready_int_early;
temp_m_axis_desc_valid_reg <= temp_m_axis_desc_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
m_axis_desc_dma_addr_reg <= m_axis_desc_dma_addr_int;
m_axis_desc_ram_sel_reg <= m_axis_desc_ram_sel_int;
m_axis_desc_ram_addr_reg <= m_axis_desc_ram_addr_int;
m_axis_desc_len_reg <= m_axis_desc_len_int;
m_axis_desc_tag_reg <= m_axis_desc_tag_int;
end else if (store_axis_temp_to_output) begin
m_axis_desc_dma_addr_reg <= temp_m_axis_desc_dma_addr_reg;
m_axis_desc_ram_sel_reg <= temp_m_axis_desc_ram_sel_reg;
m_axis_desc_ram_addr_reg <= temp_m_axis_desc_ram_addr_reg;
m_axis_desc_len_reg <= temp_m_axis_desc_len_reg;
m_axis_desc_tag_reg <= temp_m_axis_desc_tag_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_desc_dma_addr_reg <= m_axis_desc_dma_addr_int;
temp_m_axis_desc_ram_sel_reg <= m_axis_desc_ram_sel_int;
temp_m_axis_desc_ram_addr_reg <= m_axis_desc_ram_addr_int;
temp_m_axis_desc_len_reg <= m_axis_desc_len_int;
temp_m_axis_desc_tag_reg <= m_axis_desc_tag_int;
end
end
// descriptor status demux
reg [S_TAG_WIDTH-1:0] m_axis_desc_status_tag_reg = {S_TAG_WIDTH{1'b0}};
reg [3:0] m_axis_desc_status_error_reg = 4'd0;
reg [PORTS-1:0] m_axis_desc_status_valid_reg = {PORTS{1'b0}};
assign m_axis_desc_status_tag = {PORTS{m_axis_desc_status_tag_reg}};
assign m_axis_desc_status_error = {PORTS{m_axis_desc_status_error_reg}};
assign m_axis_desc_status_valid = m_axis_desc_status_valid_reg;
always @(posedge clk) begin
m_axis_desc_status_tag_reg <= s_axis_desc_status_tag;
m_axis_desc_status_error_reg <= s_axis_desc_status_error;
m_axis_desc_status_valid_reg <= s_axis_desc_status_valid << (PORTS > 1 ? s_axis_desc_status_tag[S_TAG_WIDTH+CL_PORTS-1:S_TAG_WIDTH] : 0);
if (rst) begin
m_axis_desc_status_valid_reg <= {PORTS{1'b0}};
end
end
endmodule