1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/pcie_axi_master_rd.v
2021-10-03 11:55:27 -07:00

981 lines
40 KiB
Verilog

/*
Copyright (c) 2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* PCIe AXI Master (read)
*/
module pcie_axi_master_rd #
(
// TLP segment count
parameter TLP_SEG_COUNT = 1,
// TLP segment data width
parameter TLP_SEG_DATA_WIDTH = 256,
// TLP segment strobe width
parameter TLP_SEG_STRB_WIDTH = TLP_SEG_DATA_WIDTH/32,
// TLP segment header width
parameter TLP_SEG_HDR_WIDTH = 128,
// Width of AXI data bus in bits
parameter AXI_DATA_WIDTH = TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH,
// Width of AXI address bus in bits
parameter AXI_ADDR_WIDTH = 64,
// Width of AXI wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Maximum AXI burst length to generate
parameter AXI_MAX_BURST_LEN = 256,
// Force 64 bit address
parameter TLP_FORCE_64_BIT_ADDR = 0
)
(
input wire clk,
input wire rst,
/*
* TLP input (request)
*/
input wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] rx_req_tlp_hdr,
input wire [TLP_SEG_COUNT-1:0] rx_req_tlp_valid,
input wire [TLP_SEG_COUNT-1:0] rx_req_tlp_sop,
input wire [TLP_SEG_COUNT-1:0] rx_req_tlp_eop,
output wire rx_req_tlp_ready,
/*
* TLP output (completion)
*/
output wire [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] tx_cpl_tlp_data,
output wire [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] tx_cpl_tlp_strb,
output wire [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] tx_cpl_tlp_hdr,
output wire [TLP_SEG_COUNT-1:0] tx_cpl_tlp_valid,
output wire [TLP_SEG_COUNT-1:0] tx_cpl_tlp_sop,
output wire [TLP_SEG_COUNT-1:0] tx_cpl_tlp_eop,
input wire tx_cpl_tlp_ready,
/*
* AXI master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_arid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_araddr,
output wire [7:0] m_axi_arlen,
output wire [2:0] m_axi_arsize,
output wire [1:0] m_axi_arburst,
output wire m_axi_arlock,
output wire [3:0] m_axi_arcache,
output wire [2:0] m_axi_arprot,
output wire m_axi_arvalid,
input wire m_axi_arready,
input wire [AXI_ID_WIDTH-1:0] m_axi_rid,
input wire [AXI_DATA_WIDTH-1:0] m_axi_rdata,
input wire [1:0] m_axi_rresp,
input wire m_axi_rlast,
input wire m_axi_rvalid,
output wire m_axi_rready,
/*
* Configuration
*/
input wire [15:0] completer_id,
input wire [2:0] max_payload_size,
/*
* Status
*/
output wire status_error_cor,
output wire status_error_uncor
);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
parameter PAYLOAD_MAX = AXI_MAX_BURST_SIZE < 4096 ? $clog2(AXI_MAX_BURST_SIZE/128) : 5;
parameter TLP_DATA_WIDTH = TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH;
parameter TLP_STRB_WIDTH = TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH;
parameter TLP_DATA_WIDTH_BYTES = TLP_DATA_WIDTH/8;
parameter TLP_DATA_WIDTH_DWORDS = TLP_DATA_WIDTH/32;
parameter OFFSET_WIDTH = $clog2(TLP_DATA_WIDTH_DWORDS);
// bus width assertions
initial begin
if (TLP_SEG_COUNT != 1) begin
$error("Error: TLP segment count must be 1 (instance %m)");
$finish;
end
if (TLP_SEG_HDR_WIDTH != 128) begin
$error("Error: TLP segment header width must be 128 (instance %m)");
$finish;
end
if (TLP_STRB_WIDTH*32 != TLP_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
if (AXI_DATA_WIDTH != TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH) begin
$error("Error: AXI interface width must match PCIe interface width (instance %m)");
$finish;
end
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
$error("Error: AXI interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)");
$finish;
end
if (AXI_MAX_BURST_SIZE < 128) begin
$error("Error: AXI max burst size must be at least 128 bytes (instance %m)");
$finish;
end
end
localparam [2:0]
TLP_FMT_3DW = 3'b000,
TLP_FMT_4DW = 3'b001,
TLP_FMT_3DW_DATA = 3'b010,
TLP_FMT_4DW_DATA = 3'b011,
TLP_FMT_PREFIX = 3'b100;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [1:0]
AXI_STATE_IDLE = 2'd0,
AXI_STATE_START = 2'd1,
AXI_STATE_WAIT_END = 2'd2;
reg [1:0] axi_state_reg = AXI_STATE_IDLE, axi_state_next;
localparam [1:0]
TLP_STATE_IDLE = 2'd0,
TLP_STATE_HEADER = 2'd1,
TLP_STATE_TRANSFER = 2'd2,
TLP_STATE_CPL = 2'd3;
reg [1:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
// datapath control signals
reg transfer_in_save;
reg tlp_cmd_ready;
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
reg [12:0] op_count_reg = 13'd0, op_count_next;
reg [10:0] op_dword_count_reg = 11'd0, op_dword_count_next;
reg [10:0] tlp_dword_count_reg = 11'd0, tlp_dword_count_next;
reg [3:0] first_be_reg = 4'd0, first_be_next;
reg [3:0] last_be_reg = 4'd0, last_be_next;
reg [6:0] tlp_lower_addr_reg = 7'd0, tlp_lower_addr_next;
reg [12:0] tlp_len_reg = 13'd0, tlp_len_next;
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
reg [10:0] dword_count_reg = 11'd0, dword_count_next;
reg [9:0] input_cycle_count_reg = 10'd0, input_cycle_count_next;
reg [9:0] output_cycle_count_reg = 10'd0, output_cycle_count_next;
reg input_active_reg = 1'b0, input_active_next;
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg last_tlp_reg = 1'b0, last_tlp_next;
reg [2:0] status_reg = 3'd0, status_next;
reg [15:0] requester_id_reg = 16'd0, requester_id_next;
reg [9:0] tag_reg = 10'd0, tag_next;
reg [2:0] tc_reg = 3'd0, tc_next;
reg [2:0] attr_reg = 3'd0, attr_next;
reg [6:0] tlp_cmd_lower_addr_reg = 7'd0, tlp_cmd_lower_addr_next;
reg [12:0] tlp_cmd_byte_len_reg = 13'd0, tlp_cmd_byte_len_next;
reg [10:0] tlp_cmd_dword_len_reg = 11'd0, tlp_cmd_dword_len_next;
reg [9:0] tlp_cmd_input_cycle_len_reg = 10'd0, tlp_cmd_input_cycle_len_next;
reg [9:0] tlp_cmd_output_cycle_len_reg = 10'd0, tlp_cmd_output_cycle_len_next;
reg [OFFSET_WIDTH-1:0] tlp_cmd_offset_reg = {OFFSET_WIDTH{1'b0}}, tlp_cmd_offset_next;
reg [2:0] tlp_cmd_status_reg = 3'd0, tlp_cmd_status_next;
reg [15:0] tlp_cmd_requester_id_reg = 16'd0, tlp_cmd_requester_id_next;
reg [9:0] tlp_cmd_tag_reg = 10'd0, tlp_cmd_tag_next;
reg [2:0] tlp_cmd_tc_reg = 3'd0, tlp_cmd_tc_next;
reg [2:0] tlp_cmd_attr_reg = 3'd0, tlp_cmd_attr_next;
reg tlp_cmd_bubble_cycle_reg = 1'b0, tlp_cmd_bubble_cycle_next;
reg tlp_cmd_last_reg = 1'b0, tlp_cmd_last_next;
reg tlp_cmd_valid_reg = 1'b0, tlp_cmd_valid_next;
reg [10:0] max_payload_size_dw_reg = 11'd0;
reg [2:0] rx_req_tlp_hdr_fmt;
reg [4:0] rx_req_tlp_hdr_type;
reg [2:0] rx_req_tlp_hdr_tc;
reg rx_req_tlp_hdr_ln;
reg rx_req_tlp_hdr_th;
reg rx_req_tlp_hdr_td;
reg rx_req_tlp_hdr_ep;
reg [2:0] rx_req_tlp_hdr_attr;
reg [1:0] rx_req_tlp_hdr_at;
reg [10:0] rx_req_tlp_hdr_length;
reg [15:0] rx_req_tlp_hdr_requester_id;
reg [9:0] rx_req_tlp_hdr_tag;
reg [7:0] rx_req_tlp_hdr_last_be;
reg [7:0] rx_req_tlp_hdr_first_be;
reg [63:0] rx_req_tlp_hdr_addr;
reg [1:0] rx_req_tlp_hdr_ph;
reg [1:0] rx_req_first_be_offset;
reg [1:0] rx_req_last_be_offset;
reg [2:0] rx_req_single_dword_len;
reg [127:0] cpl_tlp_hdr;
reg rx_req_tlp_ready_reg = 1'b0, rx_req_tlp_ready_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_araddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_araddr_next;
reg [7:0] m_axi_arlen_reg = 8'd0, m_axi_arlen_next;
reg m_axi_arvalid_reg = 1'b0, m_axi_arvalid_next;
reg m_axi_rready_reg = 1'b0, m_axi_rready_next;
reg [AXI_DATA_WIDTH-1:0] save_axi_rdata_reg = {AXI_DATA_WIDTH{1'b0}};
wire [AXI_DATA_WIDTH-1:0] shift_axi_rdata = {m_axi_rdata, save_axi_rdata_reg} >> ((AXI_STRB_WIDTH/4-offset_reg)*32);
reg status_error_cor_reg = 1'b0, status_error_cor_next;
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
// internal datapath
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] tx_cpl_tlp_data_int;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] tx_cpl_tlp_strb_int;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] tx_cpl_tlp_hdr_int;
reg [TLP_SEG_COUNT-1:0] tx_cpl_tlp_valid_int;
reg [TLP_SEG_COUNT-1:0] tx_cpl_tlp_sop_int;
reg [TLP_SEG_COUNT-1:0] tx_cpl_tlp_eop_int;
reg tx_cpl_tlp_ready_int_reg = 1'b0;
wire tx_cpl_tlp_ready_int_early;
assign rx_req_tlp_ready = rx_req_tlp_ready_reg;
assign m_axi_arid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_araddr = m_axi_araddr_reg;
assign m_axi_arlen = m_axi_arlen_reg;
assign m_axi_arsize = AXI_BURST_SIZE;
assign m_axi_arburst = 2'b01;
assign m_axi_arlock = 1'b0;
assign m_axi_arcache = 4'b0011;
assign m_axi_arprot = 3'b010;
assign m_axi_arvalid = m_axi_arvalid_reg;
assign m_axi_rready = m_axi_rready_reg;
assign status_error_cor = status_error_cor_reg;
assign status_error_uncor = status_error_uncor_reg;
always @* begin
axi_state_next = AXI_STATE_IDLE;
rx_req_tlp_ready_next = 1'b0;
m_axi_araddr_next = m_axi_araddr_reg;
m_axi_arlen_next = m_axi_arlen_reg;
m_axi_arvalid_next = m_axi_arvalid_reg && !m_axi_arready;
axi_addr_next = axi_addr_reg;
op_count_next = op_count_reg;
op_dword_count_next = op_dword_count_reg;
tlp_dword_count_next = tlp_dword_count_reg;
first_be_next = first_be_reg;
last_be_next = last_be_reg;
tlp_cmd_lower_addr_next = tlp_cmd_lower_addr_reg;
tlp_cmd_byte_len_next = tlp_cmd_byte_len_reg;
tlp_cmd_dword_len_next = tlp_cmd_dword_len_reg;
tlp_cmd_input_cycle_len_next = tlp_cmd_input_cycle_len_reg;
tlp_cmd_output_cycle_len_next = tlp_cmd_output_cycle_len_reg;
tlp_cmd_offset_next = tlp_cmd_offset_reg;
tlp_cmd_status_next = tlp_cmd_status_reg;
tlp_cmd_requester_id_next = tlp_cmd_requester_id_reg;
tlp_cmd_tag_next = tlp_cmd_tag_reg;
tlp_cmd_attr_next = tlp_cmd_attr_reg;
tlp_cmd_tc_next = tlp_cmd_tc_reg;
tlp_cmd_bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
tlp_cmd_last_next = tlp_cmd_last_reg;
tlp_cmd_valid_next = tlp_cmd_valid_reg && !tlp_cmd_ready;
status_error_cor_next = 1'b0;
status_error_uncor_next = 1'b0;
// TLP header parsing
// DW 0
rx_req_tlp_hdr_fmt = rx_req_tlp_hdr[127:125]; // fmt
rx_req_tlp_hdr_type = rx_req_tlp_hdr[124:120]; // type
rx_req_tlp_hdr_tag[9] = rx_req_tlp_hdr[119]; // T9
rx_req_tlp_hdr_tc = rx_req_tlp_hdr[118:116]; // TC
rx_req_tlp_hdr_tag[8] = rx_req_tlp_hdr[115]; // T8
rx_req_tlp_hdr_attr[2] = rx_req_tlp_hdr[114]; // attr
rx_req_tlp_hdr_ln = rx_req_tlp_hdr[113]; // LN
rx_req_tlp_hdr_th = rx_req_tlp_hdr[112]; // TH
rx_req_tlp_hdr_td = rx_req_tlp_hdr[111]; // TD
rx_req_tlp_hdr_ep = rx_req_tlp_hdr[110]; // EP
rx_req_tlp_hdr_attr[1:0] = rx_req_tlp_hdr[109:108]; // attr
rx_req_tlp_hdr_at = rx_req_tlp_hdr[107:106]; // AT
rx_req_tlp_hdr_length = {rx_req_tlp_hdr[105:96] == 0, rx_req_tlp_hdr[105:96]}; // length
// DW 1
rx_req_tlp_hdr_requester_id = rx_req_tlp_hdr[95:80]; // requester ID
rx_req_tlp_hdr_tag[7:0] = rx_req_tlp_hdr[79:72]; // tag
rx_req_tlp_hdr_last_be = rx_req_tlp_hdr[71:68]; // last BE
rx_req_tlp_hdr_first_be = rx_req_tlp_hdr[67:64]; // first BE
if (rx_req_tlp_hdr_fmt[0] || TLP_FORCE_64_BIT_ADDR) begin
// 4 DW (64-bit address)
// DW 2+3
rx_req_tlp_hdr_addr = {rx_req_tlp_hdr[63:2], 2'b00}; // addr
rx_req_tlp_hdr_ph = rx_req_tlp_hdr[1:0]; // PH
end else begin
// 3 DW (32-bit address)
// DW 2
rx_req_tlp_hdr_addr = {rx_req_tlp_hdr[63:34], 2'b00}; // addr
rx_req_tlp_hdr_ph = rx_req_tlp_hdr[33:32]; // PH
end
casez (rx_req_tlp_hdr_first_be)
4'b0000: rx_req_single_dword_len = 3'd1;
4'b0001: rx_req_single_dword_len = 3'd1;
4'b0010: rx_req_single_dword_len = 3'd1;
4'b0100: rx_req_single_dword_len = 3'd1;
4'b1000: rx_req_single_dword_len = 3'd1;
4'b0011: rx_req_single_dword_len = 3'd2;
4'b0110: rx_req_single_dword_len = 3'd2;
4'b1100: rx_req_single_dword_len = 3'd2;
4'b01z1: rx_req_single_dword_len = 3'd3;
4'b1z10: rx_req_single_dword_len = 3'd3;
4'b1zz1: rx_req_single_dword_len = 3'd4;
default: rx_req_single_dword_len = 3'd1;
endcase
casez (rx_req_tlp_hdr_first_be)
4'b0000: rx_req_first_be_offset = 2'b00;
4'bzzz1: rx_req_first_be_offset = 2'b00;
4'bzz10: rx_req_first_be_offset = 2'b01;
4'bz100: rx_req_first_be_offset = 2'b10;
4'b1000: rx_req_first_be_offset = 2'b11;
default: rx_req_first_be_offset = 2'b00;
endcase
casez (rx_req_tlp_hdr_last_be)
4'b0000: rx_req_last_be_offset = 2'b00;
4'b1zzz: rx_req_last_be_offset = 2'b00;
4'b01zz: rx_req_last_be_offset = 2'b01;
4'b001z: rx_req_last_be_offset = 2'b10;
4'b0001: rx_req_last_be_offset = 2'b11;
default: rx_req_last_be_offset = 2'b00;
endcase
// TLP segmentation and AXI read request generation
case (axi_state_reg)
AXI_STATE_IDLE: begin
// idle state, wait for completion request
rx_req_tlp_ready_next = (!m_axi_arvalid_reg || m_axi_arready) && !tlp_cmd_valid_reg;
axi_addr_next = {rx_req_tlp_hdr_addr[63:2], rx_req_first_be_offset};
op_dword_count_next = rx_req_tlp_hdr_length;
if (rx_req_tlp_hdr_length == 1) begin
op_count_next = rx_req_single_dword_len;
end else begin
op_count_next = (rx_req_tlp_hdr_length << 2) - rx_req_first_be_offset - rx_req_last_be_offset;
end
first_be_next = rx_req_tlp_hdr_first_be;
last_be_next = op_dword_count_next == 1 ? rx_req_tlp_hdr_first_be : rx_req_tlp_hdr_last_be;
if (rx_req_tlp_ready && rx_req_tlp_valid && rx_req_tlp_sop) begin
tlp_cmd_status_next = CPL_STATUS_SC;
tlp_cmd_requester_id_next = rx_req_tlp_hdr_requester_id;
tlp_cmd_tag_next = rx_req_tlp_hdr_tag;
tlp_cmd_tc_next = rx_req_tlp_hdr_tc;
tlp_cmd_attr_next = rx_req_tlp_hdr_attr;
if (!rx_req_tlp_hdr_fmt[1] && rx_req_tlp_hdr_type == 5'b00000) begin
// read request
rx_req_tlp_ready_next = 1'b0;
axi_state_next = AXI_STATE_START;
end else begin
// other request
if ((rx_req_tlp_hdr_fmt[0] && rx_req_tlp_hdr_type & 5'b11000 == 5'b10000) || (rx_req_tlp_hdr_fmt[1] && rx_req_tlp_hdr_type == 5'b00000)) begin
// message or write request - posted, no completion
// report uncorrectable error
status_error_uncor_next = 1'b1;
end else if (!rx_req_tlp_hdr_fmt[0] && (rx_req_tlp_hdr_type == 5'b01010 || rx_req_tlp_hdr_type == 5'b01011)) begin
// completion TLP
// unexpected completion, advisory non-fatal error
// report correctable error
status_error_cor_next = 1'b1;
end else begin
// other non-posted request, send UR completion
// report correctable error
status_error_cor_next = 1'b1;
// // UR completion
tlp_cmd_status_next = CPL_STATUS_UR;
tlp_cmd_byte_len_next = 12'd0;
tlp_cmd_dword_len_next = 10'd0;
tlp_cmd_valid_next = 1'b1;
end
if (rx_req_tlp_eop) begin
axi_state_next = AXI_STATE_IDLE;
end else begin
rx_req_tlp_ready_next = 1'b1;
axi_state_next = AXI_STATE_WAIT_END;
end
end
end else begin
axi_state_next = AXI_STATE_IDLE;
end
end
AXI_STATE_START: begin
// start state, compute TLP length
if (!tlp_cmd_valid_reg && !m_axi_arvalid) begin
if (op_dword_count_reg <= max_payload_size_dw_reg) begin
// packet smaller than max payload size
// assumed to not cross 4k boundary, send one TLP
tlp_dword_count_next = op_dword_count_reg;
tlp_cmd_last_next = 1'b1;
// always last TLP, so next address is irrelevant
axi_addr_next[AXI_ADDR_WIDTH-1:12] = axi_addr_reg[AXI_ADDR_WIDTH-1:12];
axi_addr_next[11:0] = 12'd0;
end else begin
// packet larger than max payload size
// assumed to not cross 4k boundary, send one TLP, align to 128 byte RCB
tlp_dword_count_next = max_payload_size_dw_reg - axi_addr_reg[6:2];
tlp_cmd_last_next = 1'b0;
// optimized axi_addr_next = axi_addr_reg + tlp_dword_count_next;
axi_addr_next[AXI_ADDR_WIDTH-1:12] = axi_addr_reg[AXI_ADDR_WIDTH-1:12];
axi_addr_next[11:0] = {{axi_addr_reg[11:7], 5'd0} + max_payload_size_dw_reg, 2'b00};
end
// read completion TLP will transfer DWORD count minus offset into first DWORD
op_count_next = op_count_reg - (tlp_dword_count_next << 2) + axi_addr_reg[1:0];
op_dword_count_next = op_dword_count_reg - tlp_dword_count_next;
// number of bus transfers from AXI, DWORD count plus DWORD offset, divided by bus width in DWORDS
tlp_cmd_input_cycle_len_next = (tlp_dword_count_next + axi_addr_reg[OFFSET_WIDTH+2-1:2] - 1) >> (AXI_BURST_SIZE-2);
// number of bus transfers in TLP, DOWRD count plus payload start DWORD offset, divided by bus width in DWORDS
tlp_cmd_output_cycle_len_next = (tlp_dword_count_next - 1) >> (AXI_BURST_SIZE-2);
tlp_cmd_lower_addr_next = axi_addr_reg;
tlp_cmd_byte_len_next = op_count_reg;
tlp_cmd_dword_len_next = tlp_dword_count_next;
// required DWORD shift to place first DWORD read from AXI into proper position in payload
// bubble cycle required if first AXI transfer does not fill first payload transfer
tlp_cmd_offset_next = -axi_addr_reg[OFFSET_WIDTH+2-1:2];
tlp_cmd_bubble_cycle_next = axi_addr_reg[OFFSET_WIDTH+2-1:2] != 0;
tlp_cmd_valid_next = 1'b1;
m_axi_araddr_next = axi_addr_reg;
m_axi_arlen_next = (tlp_dword_count_next + axi_addr_reg[OFFSET_WIDTH+2-1:2] - 1) >> (AXI_BURST_SIZE-2);
m_axi_arvalid_next = 1;
if (!tlp_cmd_last_next) begin
axi_state_next = AXI_STATE_START;
end else begin
axi_state_next = AXI_STATE_IDLE;
end
end else begin
axi_state_next = AXI_STATE_START;
end
end
AXI_STATE_WAIT_END: begin
// wait end state, wait for end of TLP
rx_req_tlp_ready_next = 1'b1;
if (rx_req_tlp_ready && rx_req_tlp_valid) begin
if (rx_req_tlp_eop) begin
rx_req_tlp_ready_next = (!m_axi_arvalid_reg || m_axi_arready) && !tlp_cmd_valid_reg;
axi_state_next = AXI_STATE_IDLE;
end else begin
axi_state_next = AXI_STATE_WAIT_END;
end
end else begin
axi_state_next = AXI_STATE_WAIT_END;
end
end
endcase
end
always @* begin
tlp_state_next = TLP_STATE_IDLE;
transfer_in_save = 1'b0;
tlp_cmd_ready = 1'b0;
m_axi_rready_next = 1'b0;
tlp_lower_addr_next = tlp_lower_addr_reg;
tlp_len_next = tlp_len_reg;
dword_count_next = dword_count_reg;
offset_next = offset_reg;
input_cycle_count_next = input_cycle_count_reg;
output_cycle_count_next = output_cycle_count_reg;
input_active_next = input_active_reg;
bubble_cycle_next = bubble_cycle_reg;
last_cycle_next = last_cycle_reg;
last_tlp_next = last_tlp_reg;
status_next = status_reg;
requester_id_next = requester_id_reg;
tag_next = tag_reg;
tc_next = tc_reg;
attr_next = attr_reg;
// TLP header
// DW 0
cpl_tlp_hdr[127:125] = (status_reg == CPL_STATUS_SC) ? TLP_FMT_3DW_DATA : TLP_FMT_3DW; // fmt
cpl_tlp_hdr[124:120] = 5'b01010; // type
cpl_tlp_hdr[119] = tag_reg[9]; // T9
cpl_tlp_hdr[118:116] = tc_reg; // TC
cpl_tlp_hdr[115] = tag_reg[8]; // T8
cpl_tlp_hdr[114] = attr_reg[2]; // attr
cpl_tlp_hdr[113] = 1'b0; // LN
cpl_tlp_hdr[112] = 1'b0; // TH
cpl_tlp_hdr[111] = 1'b0; // TD
cpl_tlp_hdr[110] = 1'b0; // EP
cpl_tlp_hdr[109:108] = attr_reg[1:0]; // attr
cpl_tlp_hdr[107:106] = 2'b00; // AT
cpl_tlp_hdr[105:96] = dword_count_reg; // length
// DW 1
cpl_tlp_hdr[95:80] = completer_id; // completer ID
cpl_tlp_hdr[79:77] = status_reg; // completion status
cpl_tlp_hdr[76] = 1'b0; // BCM
cpl_tlp_hdr[75:64] = tlp_len_reg; // byte count
// DW 2
cpl_tlp_hdr[63:48] = requester_id_reg; // requester ID
cpl_tlp_hdr[47:40] = tag_reg[7:0]; // tag
cpl_tlp_hdr[39] = 1'b0;
cpl_tlp_hdr[38:32] = tlp_lower_addr_reg; // lower address
cpl_tlp_hdr[31:0] = 32'd0;
tx_cpl_tlp_data_int = shift_axi_rdata;
tx_cpl_tlp_strb_int = 0;
tx_cpl_tlp_hdr_int = cpl_tlp_hdr;
tx_cpl_tlp_valid_int = 0;
tx_cpl_tlp_sop_int = 0;
tx_cpl_tlp_eop_int = 0;
// AXI read response processing and TLP generation
case (tlp_state_reg)
TLP_STATE_IDLE: begin
// idle state, wait for command
m_axi_rready_next = 1'b0;
// store TLP fields and transfer parameters
tlp_lower_addr_next = tlp_cmd_lower_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
if (status_next == CPL_STATUS_SC) begin
// SC status, output TLP header
m_axi_rready_next = tx_cpl_tlp_ready_int_early;
tlp_state_next = TLP_STATE_HEADER;
end else begin
// status other than SC
tlp_state_next = TLP_STATE_CPL;
end
end else begin
tlp_state_next = TLP_STATE_IDLE;
end
end
TLP_STATE_HEADER: begin
// header state, send TLP header
m_axi_rready_next = tx_cpl_tlp_ready_int_early && input_active_reg;
if (tx_cpl_tlp_ready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
transfer_in_save = m_axi_rready && m_axi_rvalid;
if (bubble_cycle_reg) begin
// bubble cycle; store input data and update input cycle count
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
bubble_cycle_next = 1'b0;
m_axi_rready_next = tx_cpl_tlp_ready_int_early && input_active_next;
tlp_state_next = TLP_STATE_HEADER;
end else begin
// some data is transferred with header
dword_count_next = dword_count_reg - TLP_STRB_WIDTH;
// update cycle counters
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
// output data
tx_cpl_tlp_data_int = shift_axi_rdata;
if (dword_count_reg >= TLP_STRB_WIDTH) begin
tx_cpl_tlp_strb_int = {TLP_STRB_WIDTH{1'b1}};
end else begin
tx_cpl_tlp_strb_int = {TLP_STRB_WIDTH{1'b1}} >> (TLP_STRB_WIDTH - dword_count_reg);
end
tx_cpl_tlp_hdr_int = cpl_tlp_hdr;
tx_cpl_tlp_valid_int = 1'b1;
tx_cpl_tlp_sop_int = 1'b1;
tx_cpl_tlp_eop_int = 1'b0;
if (last_cycle_reg) begin
tx_cpl_tlp_eop_int = 1'b1;
// skip idle state if possible
tlp_lower_addr_next = tlp_cmd_lower_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
m_axi_rready_next = tx_cpl_tlp_ready_int_early;
tlp_state_next = TLP_STATE_HEADER;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
m_axi_rready_next = tx_cpl_tlp_ready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end
end
end else begin
tlp_state_next = TLP_STATE_HEADER;
end
end
TLP_STATE_TRANSFER: begin
// transfer state, transfer data
m_axi_rready_next = tx_cpl_tlp_ready_int_early && input_active_reg;
if (tx_cpl_tlp_ready_int_reg && ((m_axi_rready && m_axi_rvalid) || !input_active_reg)) begin
transfer_in_save = 1'b1;
// update DWORD count
dword_count_next = dword_count_reg - AXI_STRB_WIDTH/4;
// update cycle counters
if (input_active_reg) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg > 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
// output data
tx_cpl_tlp_data_int = shift_axi_rdata;
if (dword_count_reg >= TLP_STRB_WIDTH) begin
tx_cpl_tlp_strb_int = {TLP_STRB_WIDTH{1'b1}};
end else begin
tx_cpl_tlp_strb_int = {TLP_STRB_WIDTH{1'b1}} >> (TLP_STRB_WIDTH - dword_count_reg);
end
tx_cpl_tlp_hdr_int = cpl_tlp_hdr;
tx_cpl_tlp_valid_int = 1'b1;
tx_cpl_tlp_sop_int = 1'b0;
tx_cpl_tlp_eop_int = 1'b0;
if (last_cycle_reg) begin
tx_cpl_tlp_eop_int = 1'b1;
// skip idle state if possible
tlp_lower_addr_next = tlp_cmd_lower_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
m_axi_rready_next = tx_cpl_tlp_ready_int_early;
tlp_state_next = TLP_STATE_HEADER;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
m_axi_rready_next = tx_cpl_tlp_ready_int_early && input_active_next;
tlp_state_next = TLP_STATE_TRANSFER;
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end
TLP_STATE_CPL: begin
// send completion
tx_cpl_tlp_strb_int = 0;
tx_cpl_tlp_hdr_int = cpl_tlp_hdr;
tx_cpl_tlp_valid_int = 1'b1;
tx_cpl_tlp_sop_int = 1'b1;
tx_cpl_tlp_eop_int = 1'b1;
if (tx_cpl_tlp_ready_int_reg) begin
// skip idle state if possible
tlp_lower_addr_next = tlp_cmd_lower_addr_reg;
tlp_len_next = tlp_cmd_byte_len_reg;
dword_count_next = tlp_cmd_dword_len_reg;
offset_next = tlp_cmd_offset_reg;
input_cycle_count_next = tlp_cmd_input_cycle_len_reg;
output_cycle_count_next = tlp_cmd_output_cycle_len_reg;
input_active_next = 1'b1;
bubble_cycle_next = tlp_cmd_bubble_cycle_reg;
last_cycle_next = tlp_cmd_output_cycle_len_reg == 0;
last_tlp_next = tlp_cmd_last_reg;
status_next = tlp_cmd_status_reg;
requester_id_next = tlp_cmd_requester_id_reg;
tag_next = tlp_cmd_tag_reg;
tc_next = tlp_cmd_tc_reg;
attr_next = tlp_cmd_attr_reg;
if (tlp_cmd_valid_reg) begin
tlp_cmd_ready = 1'b1;
m_axi_rready_next = tx_cpl_tlp_ready_int_early;
tlp_state_next = TLP_STATE_HEADER;
end else begin
m_axi_rready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
tlp_state_next = TLP_STATE_CPL;
end
end
endcase
end
always @(posedge clk) begin
axi_state_reg <= axi_state_next;
tlp_state_reg <= tlp_state_next;
axi_addr_reg <= axi_addr_next;
op_count_reg <= op_count_next;
op_dword_count_reg <= op_dword_count_next;
tlp_dword_count_reg <= tlp_dword_count_next;
first_be_reg <= first_be_next;
last_be_reg <= last_be_next;
tlp_lower_addr_reg <= tlp_lower_addr_next;
tlp_len_reg <= tlp_len_next;
dword_count_reg <= dword_count_next;
offset_reg <= offset_next;
input_cycle_count_reg <= input_cycle_count_next;
output_cycle_count_reg <= output_cycle_count_next;
input_active_reg <= input_active_next;
bubble_cycle_reg <= bubble_cycle_next;
last_cycle_reg <= last_cycle_next;
last_tlp_reg <= last_tlp_next;
status_reg <= status_next;
requester_id_reg <= requester_id_next;
tag_reg <= tag_next;
tc_reg <= tc_next;
attr_reg <= attr_next;
tlp_cmd_lower_addr_reg <= tlp_cmd_lower_addr_next;
tlp_cmd_byte_len_reg <= tlp_cmd_byte_len_next;
tlp_cmd_dword_len_reg <= tlp_cmd_dword_len_next;
tlp_cmd_input_cycle_len_reg <= tlp_cmd_input_cycle_len_next;
tlp_cmd_output_cycle_len_reg <= tlp_cmd_output_cycle_len_next;
tlp_cmd_offset_reg <= tlp_cmd_offset_next;
tlp_cmd_status_reg <= tlp_cmd_status_next;
tlp_cmd_requester_id_reg <= tlp_cmd_requester_id_next;
tlp_cmd_tag_reg <= tlp_cmd_tag_next;
tlp_cmd_tc_reg <= tlp_cmd_tc_next;
tlp_cmd_attr_reg <= tlp_cmd_attr_next;
tlp_cmd_bubble_cycle_reg <= tlp_cmd_bubble_cycle_next;
tlp_cmd_last_reg <= tlp_cmd_last_next;
tlp_cmd_valid_reg <= tlp_cmd_valid_next;
rx_req_tlp_ready_reg <= rx_req_tlp_ready_next;
m_axi_araddr_reg <= m_axi_araddr_next;
m_axi_arlen_reg <= m_axi_arlen_next;
m_axi_arvalid_reg <= m_axi_arvalid_next;
m_axi_rready_reg <= m_axi_rready_next;
max_payload_size_dw_reg <= 11'd32 << (max_payload_size > PAYLOAD_MAX ? PAYLOAD_MAX : max_payload_size);
status_error_cor_reg <= status_error_cor_next;
status_error_uncor_reg <= status_error_uncor_next;
if (transfer_in_save) begin
save_axi_rdata_reg <= m_axi_rdata;
end
if (rst) begin
axi_state_reg <= AXI_STATE_IDLE;
tlp_state_reg <= TLP_STATE_IDLE;
tlp_cmd_valid_reg <= 1'b0;
rx_req_tlp_ready_reg <= 1'b0;
m_axi_arvalid_reg <= 1'b0;
m_axi_rready_reg <= 1'b0;
status_error_cor_reg <= 1'b0;
status_error_uncor_reg <= 1'b0;
end
end
// output datapath logic
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] tx_cpl_tlp_data_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] tx_cpl_tlp_strb_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] tx_cpl_tlp_hdr_reg = 0;
reg [TLP_SEG_COUNT-1:0] tx_cpl_tlp_valid_reg = 0, tx_cpl_tlp_valid_next;
reg [TLP_SEG_COUNT-1:0] tx_cpl_tlp_sop_reg = 0;
reg [TLP_SEG_COUNT-1:0] tx_cpl_tlp_eop_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_DATA_WIDTH-1:0] temp_tx_cpl_tlp_data_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_STRB_WIDTH-1:0] temp_tx_cpl_tlp_strb_reg = 0;
reg [TLP_SEG_COUNT*TLP_SEG_HDR_WIDTH-1:0] temp_tx_cpl_tlp_hdr_reg = 0;
reg [TLP_SEG_COUNT-1:0] temp_tx_cpl_tlp_valid_reg = 0, temp_tx_cpl_tlp_valid_next;
reg [TLP_SEG_COUNT-1:0] temp_tx_cpl_tlp_sop_reg = 0;
reg [TLP_SEG_COUNT-1:0] temp_tx_cpl_tlp_eop_reg = 0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign tx_cpl_tlp_data = tx_cpl_tlp_data_reg;
assign tx_cpl_tlp_strb = tx_cpl_tlp_strb_reg;
assign tx_cpl_tlp_hdr = tx_cpl_tlp_hdr_reg;
assign tx_cpl_tlp_valid = tx_cpl_tlp_valid_reg;
assign tx_cpl_tlp_sop = tx_cpl_tlp_sop_reg;
assign tx_cpl_tlp_eop = tx_cpl_tlp_eop_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign tx_cpl_tlp_ready_int_early = tx_cpl_tlp_ready || (!temp_tx_cpl_tlp_valid_reg && (!tx_cpl_tlp_valid_reg || !tx_cpl_tlp_valid_int));
always @* begin
// transfer sink ready state to source
tx_cpl_tlp_valid_next = tx_cpl_tlp_valid_reg;
temp_tx_cpl_tlp_valid_next = temp_tx_cpl_tlp_valid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (tx_cpl_tlp_ready_int_reg) begin
// input is ready
if (tx_cpl_tlp_ready || !tx_cpl_tlp_valid_reg) begin
// output is ready or currently not valid, transfer data to output
tx_cpl_tlp_valid_next = tx_cpl_tlp_valid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_tx_cpl_tlp_valid_next = tx_cpl_tlp_valid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (tx_cpl_tlp_ready) begin
// input is not ready, but output is ready
tx_cpl_tlp_valid_next = temp_tx_cpl_tlp_valid_reg;
temp_tx_cpl_tlp_valid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
tx_cpl_tlp_valid_reg <= 1'b0;
tx_cpl_tlp_ready_int_reg <= 1'b0;
temp_tx_cpl_tlp_valid_reg <= 1'b0;
end else begin
tx_cpl_tlp_valid_reg <= tx_cpl_tlp_valid_next;
tx_cpl_tlp_ready_int_reg <= tx_cpl_tlp_ready_int_early;
temp_tx_cpl_tlp_valid_reg <= temp_tx_cpl_tlp_valid_next;
end
// datapath
if (store_axis_int_to_output) begin
tx_cpl_tlp_data_reg <= tx_cpl_tlp_data_int;
tx_cpl_tlp_strb_reg <= tx_cpl_tlp_strb_int;
tx_cpl_tlp_hdr_reg <= tx_cpl_tlp_hdr_int;
tx_cpl_tlp_sop_reg <= tx_cpl_tlp_sop_int;
tx_cpl_tlp_eop_reg <= tx_cpl_tlp_eop_int;
end else if (store_axis_temp_to_output) begin
tx_cpl_tlp_data_reg <= temp_tx_cpl_tlp_data_reg;
tx_cpl_tlp_strb_reg <= temp_tx_cpl_tlp_strb_reg;
tx_cpl_tlp_hdr_reg <= temp_tx_cpl_tlp_hdr_reg;
tx_cpl_tlp_sop_reg <= temp_tx_cpl_tlp_sop_reg;
tx_cpl_tlp_eop_reg <= temp_tx_cpl_tlp_eop_reg;
end
if (store_axis_int_to_temp) begin
temp_tx_cpl_tlp_data_reg <= tx_cpl_tlp_data_int;
temp_tx_cpl_tlp_strb_reg <= tx_cpl_tlp_strb_int;
temp_tx_cpl_tlp_hdr_reg <= tx_cpl_tlp_hdr_int;
temp_tx_cpl_tlp_sop_reg <= tx_cpl_tlp_sop_int;
temp_tx_cpl_tlp_eop_reg <= tx_cpl_tlp_eop_int;
end
end
endmodule