1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_cobs_decode.v
Alex Forencich b9e0af3634 Revert change to early ready conditions for improved throughput
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-09-18 12:07:11 -07:00

334 lines
12 KiB
Verilog

/*
Copyright (c) 2016-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* AXI4-Stream consistent overhead byte stuffing (COBS) decoder
*/
module axis_cobs_decode
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [7:0] s_axis_tdata,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire s_axis_tuser,
/*
* AXI output
*/
output wire [7:0] m_axis_tdata,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire m_axis_tuser
);
// state register
localparam [1:0]
STATE_IDLE = 2'd0,
STATE_SEGMENT = 2'd1,
STATE_NEXT_SEGMENT = 2'd2;
reg [1:0] state_reg = STATE_IDLE, state_next;
reg [7:0] count_reg = 8'd0, count_next;
reg suppress_zero_reg = 1'b0, suppress_zero_next;
reg [7:0] temp_tdata_reg = 8'd0, temp_tdata_next;
reg temp_tvalid_reg = 1'b0, temp_tvalid_next;
// internal datapath
reg [7:0] m_axis_tdata_int;
reg m_axis_tvalid_int;
reg m_axis_tready_int_reg = 1'b0;
reg m_axis_tlast_int;
reg m_axis_tuser_int;
wire m_axis_tready_int_early;
reg s_axis_tready_reg = 1'b0, s_axis_tready_next;
assign s_axis_tready = s_axis_tready_reg;
always @* begin
state_next = STATE_IDLE;
count_next = count_reg;
suppress_zero_next = suppress_zero_reg;
temp_tdata_next = temp_tdata_reg;
temp_tvalid_next = temp_tvalid_reg;
m_axis_tdata_int = 8'd0;
m_axis_tvalid_int = 1'b0;
m_axis_tlast_int = 1'b0;
m_axis_tuser_int = 1'b0;
s_axis_tready_next = 1'b0;
case (state_reg)
STATE_IDLE: begin
// idle state
s_axis_tready_next = m_axis_tready_int_early || !temp_tvalid_reg;
// output final word
m_axis_tdata_int = temp_tdata_reg;
m_axis_tvalid_int = temp_tvalid_reg;
m_axis_tlast_int = temp_tvalid_reg;
temp_tvalid_next = temp_tvalid_reg && !m_axis_tready_int_reg;
if (s_axis_tready && s_axis_tvalid) begin
// valid input data
// skip any leading zeros
if (s_axis_tdata != 8'd0) begin
// store count value and zero suppress
count_next = s_axis_tdata-1;
suppress_zero_next = (s_axis_tdata == 8'd255);
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis_tdata == 8'd1) begin
// next byte will be count value
state_next = STATE_NEXT_SEGMENT;
end else begin
// next byte will be data
state_next = STATE_SEGMENT;
end
end else begin
state_next = STATE_IDLE;
end
end else begin
state_next = STATE_IDLE;
end
end
STATE_SEGMENT: begin
// receive segment
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis_tready && s_axis_tvalid) begin
// valid input data
// store in temp register
temp_tdata_next = s_axis_tdata;
temp_tvalid_next = 1'b1;
// move temp to output
m_axis_tdata_int = temp_tdata_reg;
m_axis_tvalid_int = temp_tvalid_reg;
// decrement count
count_next = count_reg - 1;
if (s_axis_tdata == 8'd0) begin
// got a zero byte in a frame - mark it as an error and re-sync
temp_tvalid_next = 1'b0;
m_axis_tvalid_int = 1'b1;
m_axis_tuser_int = 1'b1;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end else if (s_axis_tlast) begin
// end of frame
if (count_reg == 8'd1 && !s_axis_tuser) begin
// end of frame indication at correct time, go to idle to output final byte
state_next = STATE_IDLE;
end else begin
// end of frame indication at invalid time or tuser assert, so mark as an error and re-sync
temp_tvalid_next = 1'b0;
m_axis_tvalid_int = 1'b1;
m_axis_tuser_int = 1'b1;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else if (count_reg == 8'd1) begin
// next byte will be count value
state_next = STATE_NEXT_SEGMENT;
end else begin
// next byte will be data
state_next = STATE_SEGMENT;
end
end else begin
state_next = STATE_SEGMENT;
end
end
STATE_NEXT_SEGMENT: begin
// next segment
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis_tready && s_axis_tvalid) begin
// valid input data
// store zero in temp if not suppressed
temp_tdata_next = 8'd0;
temp_tvalid_next = !suppress_zero_reg;
// move temp to output
m_axis_tdata_int = temp_tdata_reg;
m_axis_tvalid_int = temp_tvalid_reg;
if (s_axis_tdata == 8'd0) begin
// got a zero byte delineating the end of the frame, so mark as such and re-sync
temp_tvalid_next = 1'b0;
m_axis_tuser_int = s_axis_tuser;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end else if (s_axis_tlast) begin
if (s_axis_tdata == 8'd1 && !s_axis_tuser) begin
// end of frame indication at correct time, go to idle to output final byte
state_next = STATE_IDLE;
end else begin
// end of frame indication at invalid time or tuser assert, so mark as an error and re-sync
temp_tvalid_next = 1'b0;
m_axis_tvalid_int = 1'b1;
m_axis_tuser_int = 1'b1;
m_axis_tlast_int = 1'b1;
s_axis_tready_next = 1'b1;
state_next = STATE_IDLE;
end
end else begin
// otherwise, store count value and zero suppress
count_next = s_axis_tdata-1;
suppress_zero_next = (s_axis_tdata == 8'd255);
s_axis_tready_next = m_axis_tready_int_early;
if (s_axis_tdata == 8'd1) begin
// next byte will be count value
state_next = STATE_NEXT_SEGMENT;
end else begin
// next byte will be data
state_next = STATE_SEGMENT;
end
end
end else begin
state_next = STATE_NEXT_SEGMENT;
end
end
endcase
end
always @(posedge clk) begin
state_reg <= state_next;
count_reg <= count_next;
suppress_zero_reg <= suppress_zero_next;
temp_tdata_reg <= temp_tdata_next;
temp_tvalid_reg <= temp_tvalid_next;
s_axis_tready_reg <= s_axis_tready_next;
if (rst) begin
state_reg <= STATE_IDLE;
temp_tvalid_reg <= 1'b0;
s_axis_tready_reg <= 1'b0;
end
end
// output datapath logic
reg [7:0] m_axis_tdata_reg = 8'd0;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
reg m_axis_tlast_reg = 1'b0;
reg m_axis_tuser_reg = 1'b0;
reg [7:0] temp_m_axis_tdata_reg = 8'd0;
reg temp_m_axis_tvalid_reg = 1'b0, temp_m_axis_tvalid_next;
reg temp_m_axis_tlast_reg = 1'b0;
reg temp_m_axis_tuser_reg = 1'b0;
// datapath control
reg store_axis_int_to_output;
reg store_axis_int_to_temp;
reg store_axis_temp_to_output;
assign m_axis_tdata = m_axis_tdata_reg;
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tlast = m_axis_tlast_reg;
assign m_axis_tuser = m_axis_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_tready_int_early = m_axis_tready || (!temp_m_axis_tvalid_reg && (!m_axis_tvalid_reg || !m_axis_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_tvalid_next = m_axis_tvalid_reg;
temp_m_axis_tvalid_next = temp_m_axis_tvalid_reg;
store_axis_int_to_output = 1'b0;
store_axis_int_to_temp = 1'b0;
store_axis_temp_to_output = 1'b0;
if (m_axis_tready_int_reg) begin
// input is ready
if (m_axis_tready || !m_axis_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_tvalid_next = m_axis_tvalid_int;
store_axis_int_to_temp = 1'b1;
end
end else if (m_axis_tready) begin
// input is not ready, but output is ready
m_axis_tvalid_next = temp_m_axis_tvalid_reg;
temp_m_axis_tvalid_next = 1'b0;
store_axis_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
m_axis_tready_int_reg <= m_axis_tready_int_early;
temp_m_axis_tvalid_reg <= temp_m_axis_tvalid_next;
// datapath
if (store_axis_int_to_output) begin
m_axis_tdata_reg <= m_axis_tdata_int;
m_axis_tlast_reg <= m_axis_tlast_int;
m_axis_tuser_reg <= m_axis_tuser_int;
end else if (store_axis_temp_to_output) begin
m_axis_tdata_reg <= temp_m_axis_tdata_reg;
m_axis_tlast_reg <= temp_m_axis_tlast_reg;
m_axis_tuser_reg <= temp_m_axis_tuser_reg;
end
if (store_axis_int_to_temp) begin
temp_m_axis_tdata_reg <= m_axis_tdata_int;
temp_m_axis_tlast_reg <= m_axis_tlast_int;
temp_m_axis_tuser_reg <= m_axis_tuser_int;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
m_axis_tready_int_reg <= 1'b0;
temp_m_axis_tvalid_reg <= 1'b0;
end
end
endmodule
`resetall