1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_fifo.v
2020-09-06 18:28:32 -07:00

331 lines
10 KiB
Verilog

/*
Copyright (c) 2013-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream FIFO
*/
module axis_fifo #
(
// FIFO depth in words
// KEEP_WIDTH words per cycle if KEEP_ENABLE set
// Rounded up to nearest power of 2 cycles
parameter DEPTH = 4096,
// Width of AXI stream interfaces in bits
parameter DATA_WIDTH = 8,
// Propagate tkeep signal
// If disabled, tkeep assumed to be 1'b1
parameter KEEP_ENABLE = (DATA_WIDTH>8),
// tkeep signal width (words per cycle)
parameter KEEP_WIDTH = (DATA_WIDTH/8),
// Propagate tlast signal
parameter LAST_ENABLE = 1,
// Propagate tid signal
parameter ID_ENABLE = 0,
// tid signal width
parameter ID_WIDTH = 8,
// Propagate tdest signal
parameter DEST_ENABLE = 0,
// tdest signal width
parameter DEST_WIDTH = 8,
// Propagate tuser signal
parameter USER_ENABLE = 1,
// tuser signal width
parameter USER_WIDTH = 1,
// Frame FIFO mode - operate on frames instead of cycles
// When set, m_axis_tvalid will not be deasserted within a frame
// Requires LAST_ENABLE set
parameter FRAME_FIFO = 0,
// tuser value for bad frame marker
parameter USER_BAD_FRAME_VALUE = 1'b1,
// tuser mask for bad frame marker
parameter USER_BAD_FRAME_MASK = 1'b1,
// Drop frames marked bad
// Requires FRAME_FIFO set
parameter DROP_BAD_FRAME = 0,
// Drop incoming frames when full
// When set, s_axis_tready is always asserted
// Requires FRAME_FIFO set
parameter DROP_WHEN_FULL = 0
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire [KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [ID_WIDTH-1:0] s_axis_tid,
input wire [DEST_WIDTH-1:0] s_axis_tdest,
input wire [USER_WIDTH-1:0] s_axis_tuser,
/*
* AXI output
*/
output wire [DATA_WIDTH-1:0] m_axis_tdata,
output wire [KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [ID_WIDTH-1:0] m_axis_tid,
output wire [DEST_WIDTH-1:0] m_axis_tdest,
output wire [USER_WIDTH-1:0] m_axis_tuser,
/*
* Status
*/
output wire status_overflow,
output wire status_bad_frame,
output wire status_good_frame
);
parameter ADDR_WIDTH = (KEEP_ENABLE && KEEP_WIDTH > 1) ? $clog2(DEPTH/KEEP_WIDTH) : $clog2(DEPTH);
// check configuration
initial begin
if (FRAME_FIFO && !LAST_ENABLE) begin
$error("Error: FRAME_FIFO set requires LAST_ENABLE set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && !FRAME_FIFO) begin
$error("Error: DROP_BAD_FRAME set requires FRAME_FIFO set (instance %m)");
$finish;
end
if (DROP_WHEN_FULL && !FRAME_FIFO) begin
$error("Error: DROP_WHEN_FULL set requires FRAME_FIFO set (instance %m)");
$finish;
end
if (DROP_BAD_FRAME && (USER_BAD_FRAME_MASK & {USER_WIDTH{1'b1}}) == 0) begin
$error("Error: Invalid USER_BAD_FRAME_MASK value (instance %m)");
$finish;
end
end
localparam KEEP_OFFSET = DATA_WIDTH;
localparam LAST_OFFSET = KEEP_OFFSET + (KEEP_ENABLE ? KEEP_WIDTH : 0);
localparam ID_OFFSET = LAST_OFFSET + (LAST_ENABLE ? 1 : 0);
localparam DEST_OFFSET = ID_OFFSET + (ID_ENABLE ? ID_WIDTH : 0);
localparam USER_OFFSET = DEST_OFFSET + (DEST_ENABLE ? DEST_WIDTH : 0);
localparam WIDTH = USER_OFFSET + (USER_ENABLE ? USER_WIDTH : 0);
reg [ADDR_WIDTH:0] wr_ptr_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
reg [ADDR_WIDTH:0] wr_ptr_cur_reg = {ADDR_WIDTH+1{1'b0}}, wr_ptr_cur_next;
reg [ADDR_WIDTH:0] rd_ptr_reg = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [WIDTH-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg [WIDTH-1:0] mem_read_data_reg;
reg mem_read_data_valid_reg = 1'b0, mem_read_data_valid_next;
wire [WIDTH-1:0] s_axis;
reg [WIDTH-1:0] m_axis_reg;
reg m_axis_tvalid_reg = 1'b0, m_axis_tvalid_next;
// full when first MSB different but rest same
wire full = wr_ptr_reg == (rd_ptr_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}});
wire full_cur = wr_ptr_cur_reg == (rd_ptr_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}});
// empty when pointers match exactly
wire empty = wr_ptr_reg == rd_ptr_reg;
// overflow within packet
wire full_wr = wr_ptr_reg == (wr_ptr_cur_reg ^ {1'b1, {ADDR_WIDTH{1'b0}}});
// control signals
reg write;
reg read;
reg store_output;
reg drop_frame_reg = 1'b0, drop_frame_next;
reg overflow_reg = 1'b0, overflow_next;
reg bad_frame_reg = 1'b0, bad_frame_next;
reg good_frame_reg = 1'b0, good_frame_next;
assign s_axis_tready = FRAME_FIFO ? (!full_cur || full_wr || DROP_WHEN_FULL) : !full;
generate
assign s_axis[DATA_WIDTH-1:0] = s_axis_tdata;
if (KEEP_ENABLE) assign s_axis[KEEP_OFFSET +: KEEP_WIDTH] = s_axis_tkeep;
if (LAST_ENABLE) assign s_axis[LAST_OFFSET] = s_axis_tlast;
if (ID_ENABLE) assign s_axis[ID_OFFSET +: ID_WIDTH] = s_axis_tid;
if (DEST_ENABLE) assign s_axis[DEST_OFFSET +: DEST_WIDTH] = s_axis_tdest;
if (USER_ENABLE) assign s_axis[USER_OFFSET +: USER_WIDTH] = s_axis_tuser;
endgenerate
assign m_axis_tvalid = m_axis_tvalid_reg;
assign m_axis_tdata = m_axis_reg[DATA_WIDTH-1:0];
assign m_axis_tkeep = KEEP_ENABLE ? m_axis_reg[KEEP_OFFSET +: KEEP_WIDTH] : {KEEP_WIDTH{1'b1}};
assign m_axis_tlast = LAST_ENABLE ? m_axis_reg[LAST_OFFSET] : 1'b1;
assign m_axis_tid = ID_ENABLE ? m_axis_reg[ID_OFFSET +: ID_WIDTH] : {ID_WIDTH{1'b0}};
assign m_axis_tdest = DEST_ENABLE ? m_axis_reg[DEST_OFFSET +: DEST_WIDTH] : {DEST_WIDTH{1'b0}};
assign m_axis_tuser = USER_ENABLE ? m_axis_reg[USER_OFFSET +: USER_WIDTH] : {USER_WIDTH{1'b0}};
assign status_overflow = overflow_reg;
assign status_bad_frame = bad_frame_reg;
assign status_good_frame = good_frame_reg;
// Write logic
always @* begin
write = 1'b0;
drop_frame_next = drop_frame_reg;
overflow_next = 1'b0;
bad_frame_next = 1'b0;
good_frame_next = 1'b0;
wr_ptr_next = wr_ptr_reg;
wr_ptr_cur_next = wr_ptr_cur_reg;
if (s_axis_tready && s_axis_tvalid) begin
// transfer in
if (!FRAME_FIFO) begin
// normal FIFO mode
write = 1'b1;
wr_ptr_next = wr_ptr_reg + 1;
end else if (full_cur || full_wr || drop_frame_reg) begin
// full, packet overflow, or currently dropping frame
// drop frame
drop_frame_next = 1'b1;
if (s_axis_tlast) begin
// end of frame, reset write pointer
wr_ptr_cur_next = wr_ptr_reg;
drop_frame_next = 1'b0;
overflow_next = 1'b1;
end
end else begin
write = 1'b1;
wr_ptr_cur_next = wr_ptr_cur_reg + 1;
if (s_axis_tlast) begin
// end of frame
if (DROP_BAD_FRAME && USER_BAD_FRAME_MASK & ~(s_axis_tuser ^ USER_BAD_FRAME_VALUE)) begin
// bad packet, reset write pointer
wr_ptr_cur_next = wr_ptr_reg;
bad_frame_next = 1'b1;
end else begin
// good packet, update write pointer
wr_ptr_next = wr_ptr_cur_reg + 1;
good_frame_next = 1'b1;
end
end
end
end
end
always @(posedge clk) begin
wr_ptr_reg <= wr_ptr_next;
wr_ptr_cur_reg <= wr_ptr_cur_next;
drop_frame_reg <= drop_frame_next;
overflow_reg <= overflow_next;
bad_frame_reg <= bad_frame_next;
good_frame_reg <= good_frame_next;
if (write) begin
mem[FRAME_FIFO ? wr_ptr_cur_reg[ADDR_WIDTH-1:0] : wr_ptr_reg[ADDR_WIDTH-1:0]] <= s_axis;
end
if (rst) begin
wr_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
wr_ptr_cur_reg <= {ADDR_WIDTH+1{1'b0}};
drop_frame_reg <= 1'b0;
overflow_reg <= 1'b0;
bad_frame_reg <= 1'b0;
good_frame_reg <= 1'b0;
end
end
// Read logic
always @* begin
read = 1'b0;
rd_ptr_next = rd_ptr_reg;
mem_read_data_valid_next = mem_read_data_valid_reg;
if (store_output || !mem_read_data_valid_reg) begin
// output data not valid OR currently being transferred
if (!empty) begin
// not empty, perform read
read = 1'b1;
mem_read_data_valid_next = 1'b1;
rd_ptr_next = rd_ptr_reg + 1;
end else begin
// empty, invalidate
mem_read_data_valid_next = 1'b0;
end
end
end
always @(posedge clk) begin
rd_ptr_reg <= rd_ptr_next;
mem_read_data_valid_reg <= mem_read_data_valid_next;
if (read) begin
mem_read_data_reg <= mem[rd_ptr_reg[ADDR_WIDTH-1:0]];
end
if (rst) begin
rd_ptr_reg <= {ADDR_WIDTH+1{1'b0}};
mem_read_data_valid_reg <= 1'b0;
end
end
// Output register
always @* begin
store_output = 1'b0;
m_axis_tvalid_next = m_axis_tvalid_reg;
if (m_axis_tready || !m_axis_tvalid) begin
store_output = 1'b1;
m_axis_tvalid_next = mem_read_data_valid_reg;
end
end
always @(posedge clk) begin
m_axis_tvalid_reg <= m_axis_tvalid_next;
if (store_output) begin
m_axis_reg <= mem_read_data_reg;
end
if (rst) begin
m_axis_tvalid_reg <= 1'b0;
end
end
endmodule