1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/fpga/common/rtl/mqnic_ingress.v
Alex Forencich d0cc106783 fpga: Remove redundant RX_RSS_ENABLE parameter
Signed-off-by: Alex Forencich <alex@alexforencich.com>
2022-10-13 17:10:25 -07:00

343 lines
10 KiB
Verilog

/*
Copyright 2021, The Regents of the University of California.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ''AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE REGENTS OF THE UNIVERSITY OF CALIFORNIA OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
OF SUCH DAMAGE.
The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of The Regents of the University of California.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* NIC ingress processing
*/
module mqnic_ingress #
(
// Request tag field width
parameter REQ_TAG_WIDTH = 8,
// Receive queue index width
parameter RX_QUEUE_INDEX_WIDTH = 8,
// Enable RX RSS
// Enable RX hashing
parameter RX_HASH_ENABLE = 1,
// Enable RX checksum offload
parameter RX_CHECKSUM_ENABLE = 1,
// Width of AXI stream interfaces in bits
parameter AXIS_DATA_WIDTH = 256,
// AXI stream tkeep signal width (words per cycle)
parameter AXIS_KEEP_WIDTH = AXIS_DATA_WIDTH/8,
// AXI stream tid signal width
parameter AXIS_ID_WIDTH = 8,
// AXI stream tdest signal width
parameter AXIS_DEST_WIDTH = 8,
// AXI stream tuser signal width
parameter S_AXIS_USER_WIDTH = 1,
// AXI stream tuser signal width
parameter M_AXIS_USER_WIDTH = S_AXIS_USER_WIDTH,
// Max receive packet size
parameter MAX_RX_SIZE = 2048
)
(
input wire clk,
input wire rst,
/*
* Receive data input
*/
input wire [AXIS_DATA_WIDTH-1:0] s_axis_tdata,
input wire [AXIS_KEEP_WIDTH-1:0] s_axis_tkeep,
input wire s_axis_tvalid,
output wire s_axis_tready,
input wire s_axis_tlast,
input wire [AXIS_ID_WIDTH-1:0] s_axis_tid,
input wire [AXIS_DEST_WIDTH-1:0] s_axis_tdest,
input wire [S_AXIS_USER_WIDTH-1:0] s_axis_tuser,
/*
* Receive data output
*/
output wire [AXIS_DATA_WIDTH-1:0] m_axis_tdata,
output wire [AXIS_KEEP_WIDTH-1:0] m_axis_tkeep,
output wire m_axis_tvalid,
input wire m_axis_tready,
output wire m_axis_tlast,
output wire [AXIS_ID_WIDTH-1:0] m_axis_tid,
output wire [AXIS_DEST_WIDTH-1:0] m_axis_tdest,
output wire [M_AXIS_USER_WIDTH-1:0] m_axis_tuser,
/*
* RX checksum output
*/
output wire [15:0] rx_csum,
output wire rx_csum_valid,
input wire rx_csum_ready
);
localparam RX_HASH_WIDTH = 32;
localparam RX_HASH_TYPE_WIDTH = 4;
localparam TUSER_HASH_OFFSET = S_AXIS_USER_WIDTH;
localparam TUSER_HASH_TYPE_OFFSET = TUSER_HASH_OFFSET + (RX_HASH_ENABLE ? RX_HASH_WIDTH : 0);
localparam INT_TUSER_WIDTH = TUSER_HASH_TYPE_OFFSET + (RX_HASH_ENABLE ? RX_HASH_TYPE_WIDTH : 0);
generate
wire [31:0] rx_fifo_hash;
wire [3:0] rx_fifo_hash_type;
wire rx_fifo_hash_ready;
wire rx_fifo_hash_valid;
if (RX_HASH_ENABLE) begin
wire [31:0] rx_hash_int;
wire [3:0] rx_hash_type_int;
wire rx_hash_valid_int;
rx_hash #(
.DATA_WIDTH(AXIS_DATA_WIDTH)
)
rx_hash_inst (
.clk(clk),
.rst(rst),
.s_axis_tdata(s_axis_tdata),
.s_axis_tkeep(s_axis_tkeep),
.s_axis_tvalid(s_axis_tvalid & s_axis_tready),
.s_axis_tlast(s_axis_tlast),
.hash_key(320'h6d5a56da255b0ec24167253d43a38fb0d0ca2bcbae7b30b477cb2da38030f20c6a42b73bbeac01fa),
.m_axis_hash(rx_hash_int),
.m_axis_hash_type(rx_hash_type_int),
.m_axis_hash_valid(rx_hash_valid_int)
);
axis_fifo #(
.DEPTH(32),
.DATA_WIDTH(32+4),
.KEEP_ENABLE(0),
.LAST_ENABLE(0),
.ID_ENABLE(0),
.DEST_ENABLE(0),
.USER_ENABLE(0),
.FRAME_FIFO(0)
)
rx_hash_fifo (
.clk(clk),
.rst(rst),
// AXI input
.s_axis_tdata({rx_hash_type_int, rx_hash_int}),
.s_axis_tkeep(0),
.s_axis_tvalid(rx_hash_valid_int),
.s_axis_tready(),
.s_axis_tlast(0),
.s_axis_tid(0),
.s_axis_tdest(0),
.s_axis_tuser(0),
// AXI output
.m_axis_tdata({rx_fifo_hash_type, rx_fifo_hash}),
.m_axis_tkeep(),
.m_axis_tvalid(rx_fifo_hash_valid),
.m_axis_tready(rx_fifo_hash_ready),
.m_axis_tlast(),
.m_axis_tid(),
.m_axis_tdest(),
.m_axis_tuser(),
// Status
.status_overflow(),
.status_bad_frame(),
.status_good_frame()
);
end else begin
assign rx_fifo_hash = 32'd0;
assign rx_fifo_hash_type = 4'd0;
assign rx_fifo_hash_valid = 1'b0;
end
if (RX_CHECKSUM_ENABLE) begin
wire [15:0] rx_csum_int;
wire rx_csum_valid_int;
rx_checksum #(
.DATA_WIDTH(AXIS_DATA_WIDTH)
)
rx_checksum_inst (
.clk(clk),
.rst(rst),
.s_axis_tdata(s_axis_tdata),
.s_axis_tkeep(s_axis_tkeep),
.s_axis_tvalid(s_axis_tvalid & s_axis_tready),
.s_axis_tlast(s_axis_tlast),
.m_axis_csum(rx_csum_int),
.m_axis_csum_valid(rx_csum_valid_int)
);
axis_fifo #(
.DEPTH(32),
.DATA_WIDTH(16),
.KEEP_ENABLE(0),
.LAST_ENABLE(0),
.ID_ENABLE(0),
.DEST_ENABLE(0),
.USER_ENABLE(0),
.FRAME_FIFO(0)
)
rx_csum_fifo (
.clk(clk),
.rst(rst),
// AXI input
.s_axis_tdata(rx_csum_int),
.s_axis_tkeep(0),
.s_axis_tvalid(rx_csum_valid_int),
.s_axis_tready(),
.s_axis_tlast(0),
.s_axis_tid(0),
.s_axis_tdest(0),
.s_axis_tuser(0),
// AXI output
.m_axis_tdata(rx_csum),
.m_axis_tkeep(),
.m_axis_tvalid(rx_csum_valid),
.m_axis_tready(rx_csum_ready),
.m_axis_tlast(),
.m_axis_tid(),
.m_axis_tdest(),
.m_axis_tuser(),
// Status
.status_overflow(),
.status_bad_frame(),
.status_good_frame()
);
end else begin
assign rx_csum = 16'd0;
assign rx_csum_valid = 1'b0;
end
if (RX_HASH_ENABLE) begin
wire [AXIS_DATA_WIDTH-1:0] fifo_axis_tdata;
wire [AXIS_KEEP_WIDTH-1:0] fifo_axis_tkeep;
wire fifo_axis_tvalid;
wire fifo_axis_tready;
wire fifo_axis_tlast;
wire [AXIS_ID_WIDTH-1:0] fifo_axis_tid;
wire [AXIS_DEST_WIDTH-1:0] fifo_axis_tdest;
wire [S_AXIS_USER_WIDTH-1:0] fifo_axis_tuser;
axis_fifo #(
.DEPTH(AXIS_KEEP_WIDTH*32),
.DATA_WIDTH(AXIS_DATA_WIDTH),
.KEEP_ENABLE(AXIS_KEEP_WIDTH > 1),
.KEEP_WIDTH(AXIS_KEEP_WIDTH),
.LAST_ENABLE(1),
.ID_ENABLE(1),
.ID_WIDTH(AXIS_ID_WIDTH),
.DEST_ENABLE(1),
.DEST_WIDTH(AXIS_DEST_WIDTH),
.USER_ENABLE(1),
.USER_WIDTH(S_AXIS_USER_WIDTH),
.FRAME_FIFO(0)
)
rx_hash_data_fifo (
.clk(clk),
.rst(rst),
// AXI input
.s_axis_tdata(s_axis_tdata),
.s_axis_tkeep(s_axis_tkeep),
.s_axis_tvalid(s_axis_tvalid),
.s_axis_tready(s_axis_tready),
.s_axis_tlast(s_axis_tlast),
.s_axis_tid(s_axis_tid),
.s_axis_tdest(s_axis_tdest),
.s_axis_tuser(s_axis_tuser),
// AXI output
.m_axis_tdata(fifo_axis_tdata),
.m_axis_tkeep(fifo_axis_tkeep),
.m_axis_tvalid(fifo_axis_tvalid),
.m_axis_tready(fifo_axis_tready),
.m_axis_tlast(fifo_axis_tlast),
.m_axis_tid(fifo_axis_tid),
.m_axis_tdest(fifo_axis_tdest),
.m_axis_tuser(fifo_axis_tuser),
// Status
.status_overflow(),
.status_bad_frame(),
.status_good_frame()
);
wire sideband_valid = rx_fifo_hash_valid;
assign rx_fifo_hash_ready = fifo_axis_tready && fifo_axis_tvalid && fifo_axis_tlast;
assign fifo_axis_tready = m_axis_tready && sideband_valid;
assign m_axis_tdata = fifo_axis_tdata;
assign m_axis_tkeep = fifo_axis_tkeep;
assign m_axis_tvalid = fifo_axis_tvalid && sideband_valid;
assign m_axis_tlast = fifo_axis_tlast;
assign m_axis_tid = fifo_axis_tid;
assign m_axis_tdest = fifo_axis_tdest;
assign m_axis_tuser = {rx_fifo_hash_type, rx_fifo_hash, fifo_axis_tuser};
end else begin
// bypass
assign m_axis_tdata = s_axis_tdata;
assign m_axis_tkeep = s_axis_tkeep;
assign m_axis_tvalid = s_axis_tvalid;
assign s_axis_tready = m_axis_tready;
assign m_axis_tlast = s_axis_tlast;
assign m_axis_tid = s_axis_tid;
assign m_axis_tdest = s_axis_tdest;
assign m_axis_tuser = s_axis_tuser;
end
endgenerate
endmodule
`resetall