mirror of
https://github.com/corundum/corundum.git
synced 2025-01-16 08:12:53 +08:00
c1e947dc3d
Signed-off-by: Alex Forencich <alex@alexforencich.com>
828 lines
28 KiB
Verilog
828 lines
28 KiB
Verilog
/*
|
|
|
|
Copyright (c) 2019-2021 Alex Forencich
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in
|
|
all copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
THE SOFTWARE.
|
|
|
|
*/
|
|
|
|
// Language: Verilog 2001
|
|
|
|
`resetall
|
|
`timescale 1ns / 1ps
|
|
`default_nettype none
|
|
|
|
/*
|
|
* PTP clock CDC (clock domain crossing) module
|
|
*/
|
|
module ptp_clock_cdc #
|
|
(
|
|
parameter TS_WIDTH = 96,
|
|
parameter NS_WIDTH = 4,
|
|
parameter FNS_WIDTH = 16,
|
|
parameter USE_SAMPLE_CLOCK = 1,
|
|
parameter LOG_RATE = 3,
|
|
parameter PIPELINE_OUTPUT = 0
|
|
)
|
|
(
|
|
input wire input_clk,
|
|
input wire input_rst,
|
|
input wire output_clk,
|
|
input wire output_rst,
|
|
input wire sample_clk,
|
|
|
|
/*
|
|
* Timestamp inputs from source PTP clock
|
|
*/
|
|
input wire [TS_WIDTH-1:0] input_ts,
|
|
input wire input_ts_step,
|
|
|
|
/*
|
|
* Timestamp outputs
|
|
*/
|
|
output wire [TS_WIDTH-1:0] output_ts,
|
|
output wire output_ts_step,
|
|
|
|
/*
|
|
* PPS output
|
|
*/
|
|
output wire output_pps,
|
|
|
|
/*
|
|
* Status
|
|
*/
|
|
output wire locked
|
|
);
|
|
|
|
// bus width assertions
|
|
initial begin
|
|
if (TS_WIDTH != 64 && TS_WIDTH != 96) begin
|
|
$error("Error: Timestamp width must be 64 or 96");
|
|
$finish;
|
|
end
|
|
end
|
|
|
|
parameter TS_NS_WIDTH = TS_WIDTH == 96 ? 30 : 48;
|
|
|
|
parameter PHASE_CNT_WIDTH = LOG_RATE;
|
|
parameter PHASE_ACC_WIDTH = PHASE_CNT_WIDTH+16;
|
|
|
|
parameter LOG_SAMPLE_SYNC_RATE = LOG_RATE;
|
|
parameter SAMPLE_ACC_WIDTH = LOG_SAMPLE_SYNC_RATE+2;
|
|
|
|
parameter DEST_SYNC_LOCK_WIDTH = 7;
|
|
parameter PTP_LOCK_WIDTH = 8;
|
|
|
|
localparam [30:0] NS_PER_S = 31'd1_000_000_000;
|
|
|
|
reg [NS_WIDTH-1:0] period_ns_reg = 0, period_ns_next;
|
|
reg [FNS_WIDTH-1:0] period_fns_reg = 0, period_fns_next;
|
|
reg [NS_WIDTH-1:0] period_ns_delay_reg = 0, period_ns_delay_next;
|
|
reg [FNS_WIDTH-1:0] period_fns_delay_reg = 0, period_fns_delay_next;
|
|
reg [30:0] period_ns_ovf_reg = 0, period_ns_ovf_next;
|
|
reg [FNS_WIDTH-1:0] period_fns_ovf_reg = 0, period_fns_ovf_next;
|
|
|
|
reg [47:0] src_ts_s_capt_reg = 0;
|
|
reg [TS_NS_WIDTH-1:0] src_ts_ns_capt_reg = 0;
|
|
reg [FNS_WIDTH-1:0] src_ts_fns_capt_reg = 0;
|
|
reg src_ts_step_capt_reg = 0;
|
|
|
|
reg [47:0] dest_ts_s_capt_reg = 0;
|
|
reg [TS_NS_WIDTH-1:0] dest_ts_ns_capt_reg = 0;
|
|
reg [FNS_WIDTH-1:0] dest_ts_fns_capt_reg = 0;
|
|
|
|
reg [47:0] ts_s_sync_reg = 0;
|
|
reg [TS_NS_WIDTH-1:0] ts_ns_sync_reg = 0;
|
|
reg [FNS_WIDTH-1:0] ts_fns_sync_reg = 0;
|
|
reg ts_step_sync_reg = 0;
|
|
|
|
reg [47:0] ts_s_reg = 0, ts_s_next;
|
|
reg [TS_NS_WIDTH-1:0] ts_ns_reg = 0, ts_ns_next;
|
|
reg [FNS_WIDTH-1:0] ts_fns_reg = 0, ts_fns_next;
|
|
reg [TS_NS_WIDTH-1:0] ts_ns_inc_reg = 0, ts_ns_inc_next;
|
|
reg [FNS_WIDTH-1:0] ts_fns_inc_reg = 0, ts_fns_inc_next;
|
|
reg [TS_NS_WIDTH+1-1:0] ts_ns_ovf_reg = {TS_NS_WIDTH+1{1'b1}}, ts_ns_ovf_next;
|
|
reg [FNS_WIDTH-1:0] ts_fns_ovf_reg = {FNS_WIDTH{1'b1}}, ts_fns_ovf_next;
|
|
|
|
reg ts_step_reg = 1'b0, ts_step_next;
|
|
|
|
reg pps_reg = 1'b0;
|
|
|
|
reg [47:0] ts_s_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
reg [TS_NS_WIDTH-1:0] ts_ns_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
reg [FNS_WIDTH-1:0] ts_fns_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
reg ts_step_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
reg pps_pipe_reg[0:PIPELINE_OUTPUT-1];
|
|
|
|
reg [PHASE_CNT_WIDTH-1:0] src_phase_reg = {PHASE_CNT_WIDTH{1'b0}};
|
|
reg [PHASE_ACC_WIDTH-1:0] dest_phase_reg = {PHASE_ACC_WIDTH{1'b0}}, dest_phase_next;
|
|
reg [PHASE_ACC_WIDTH-1:0] dest_phase_inc_reg = {PHASE_ACC_WIDTH{1'b0}}, dest_phase_inc_next;
|
|
|
|
reg src_sync_reg = 1'b0;
|
|
reg src_update_reg = 1'b0;
|
|
reg dest_sync_reg = 1'b0, dest_sync_next = 1'b0;
|
|
reg dest_update_reg = 1'b0, dest_update_next = 1'b0;
|
|
|
|
reg src_sync_sync1_reg = 1'b0;
|
|
reg src_sync_sync2_reg = 1'b0;
|
|
reg src_sync_sync3_reg = 1'b0;
|
|
reg dest_sync_sync1_reg = 1'b0;
|
|
reg dest_sync_sync2_reg = 1'b0;
|
|
reg dest_sync_sync3_reg = 1'b0;
|
|
|
|
reg src_sync_sample_sync1_reg = 1'b0;
|
|
reg src_sync_sample_sync2_reg = 1'b0;
|
|
reg src_sync_sample_sync3_reg = 1'b0;
|
|
reg dest_sync_sample_sync1_reg = 1'b0;
|
|
reg dest_sync_sample_sync2_reg = 1'b0;
|
|
reg dest_sync_sample_sync3_reg = 1'b0;
|
|
|
|
reg [SAMPLE_ACC_WIDTH-1:0] sample_acc_reg = 0, sample_acc_next = 0;
|
|
reg [SAMPLE_ACC_WIDTH-1:0] sample_acc_out_reg = 0;
|
|
reg [LOG_SAMPLE_SYNC_RATE-1:0] sample_cnt_reg = 0;
|
|
reg sample_update_reg = 1'b0;
|
|
reg sample_update_sync1_reg = 1'b0;
|
|
reg sample_update_sync2_reg = 1'b0;
|
|
reg sample_update_sync3_reg = 1'b0;
|
|
|
|
generate
|
|
|
|
if (PIPELINE_OUTPUT > 0) begin
|
|
|
|
// pipeline
|
|
(* shreg_extract = "no" *)
|
|
reg [TS_WIDTH-1:0] output_ts_reg[0:PIPELINE_OUTPUT-1];
|
|
(* shreg_extract = "no" *)
|
|
reg output_ts_step_reg[0:PIPELINE_OUTPUT-1];
|
|
(* shreg_extract = "no" *)
|
|
reg output_pps_reg[0:PIPELINE_OUTPUT-1];
|
|
|
|
assign output_ts = output_ts_reg[PIPELINE_OUTPUT-1];
|
|
assign output_ts_step = output_ts_step_reg[PIPELINE_OUTPUT-1];
|
|
assign output_pps = output_pps_reg[PIPELINE_OUTPUT-1];
|
|
|
|
integer i;
|
|
|
|
initial begin
|
|
for (i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
output_ts_reg[i] = 0;
|
|
output_ts_step_reg[i] = 1'b0;
|
|
output_pps_reg[i] = 1'b0;
|
|
end
|
|
end
|
|
|
|
always @(posedge output_clk) begin
|
|
if (TS_WIDTH == 96) begin
|
|
output_ts_reg[0][95:48] <= ts_s_reg;
|
|
output_ts_reg[0][47:46] <= 2'b00;
|
|
output_ts_reg[0][45:16] <= ts_ns_reg;
|
|
output_ts_reg[0][15:0] <= {ts_fns_reg, 16'd0} >> FNS_WIDTH;
|
|
end else if (TS_WIDTH == 64) begin
|
|
output_ts_reg[0][63:16] <= ts_ns_reg;
|
|
output_ts_reg[0][15:0] <= {ts_fns_reg, 16'd0} >> FNS_WIDTH;
|
|
end
|
|
|
|
output_ts_step_reg[0] <= ts_step_reg;
|
|
output_pps_reg[0] <= pps_reg;
|
|
|
|
for (i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
|
|
output_ts_reg[i+1] <= output_ts_reg[i];
|
|
output_ts_step_reg[i+1] <= output_ts_step_reg[i];
|
|
output_pps_reg[i+1] <= output_pps_reg[i];
|
|
end
|
|
|
|
if (output_rst) begin
|
|
for (i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
output_ts_reg[i] <= 0;
|
|
output_ts_step_reg[i] <= 1'b0;
|
|
output_pps_reg[i] <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
end else begin
|
|
|
|
if (TS_WIDTH == 96) begin
|
|
assign output_ts[95:48] = ts_s_reg;
|
|
assign output_ts[47:46] = 2'b00;
|
|
assign output_ts[45:16] = ts_ns_reg;
|
|
assign output_ts[15:0] = {ts_fns_reg, 16'd0} >> FNS_WIDTH;
|
|
end else if (TS_WIDTH == 64) begin
|
|
assign output_ts[63:16] = ts_ns_reg;
|
|
assign output_ts[15:0] = {ts_fns_reg, 16'd0} >> FNS_WIDTH;
|
|
end
|
|
|
|
assign output_ts_step = ts_step_reg;
|
|
|
|
assign output_pps = pps_reg;
|
|
|
|
end
|
|
|
|
endgenerate
|
|
|
|
integer i;
|
|
|
|
initial begin
|
|
for (i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
ts_s_pipe_reg[i] = 0;
|
|
ts_ns_pipe_reg[i] = 0;
|
|
ts_fns_pipe_reg[i] = 0;
|
|
ts_step_pipe_reg[i] = 1'b0;
|
|
pps_pipe_reg[i] = 1'b0;
|
|
end
|
|
end
|
|
|
|
// source PTP clock capture and sync logic
|
|
reg input_ts_step_reg = 1'b0;
|
|
|
|
always @(posedge input_clk) begin
|
|
input_ts_step_reg <= input_ts_step || input_ts_step_reg;
|
|
|
|
{src_update_reg, src_phase_reg} <= src_phase_reg+1;
|
|
|
|
if (src_update_reg) begin
|
|
// capture source TS
|
|
if (TS_WIDTH == 96) begin
|
|
src_ts_s_capt_reg <= input_ts[95:48];
|
|
src_ts_ns_capt_reg <= input_ts[45:16];
|
|
end else begin
|
|
src_ts_ns_capt_reg <= input_ts[63:16];
|
|
end
|
|
src_ts_fns_capt_reg <= FNS_WIDTH > 16 ? input_ts[15:0] << (FNS_WIDTH-16) : input_ts[15:0] >> (16-FNS_WIDTH);
|
|
src_ts_step_capt_reg <= input_ts_step || input_ts_step_reg;
|
|
input_ts_step_reg <= 1'b0;
|
|
src_sync_reg <= !src_sync_reg;
|
|
end
|
|
|
|
if (input_rst) begin
|
|
input_ts_step_reg <= 1'b0;
|
|
|
|
src_phase_reg <= {PHASE_CNT_WIDTH{1'b0}};
|
|
src_sync_reg <= 1'b0;
|
|
src_update_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
// CDC logic
|
|
always @(posedge output_clk) begin
|
|
src_sync_sync1_reg <= src_sync_reg;
|
|
src_sync_sync2_reg <= src_sync_sync1_reg;
|
|
src_sync_sync3_reg <= src_sync_sync2_reg;
|
|
dest_sync_sync1_reg <= dest_sync_reg;
|
|
dest_sync_sync2_reg <= dest_sync_sync1_reg;
|
|
dest_sync_sync3_reg <= dest_sync_sync2_reg;
|
|
end
|
|
|
|
always @(posedge sample_clk) begin
|
|
src_sync_sample_sync1_reg <= src_sync_reg;
|
|
src_sync_sample_sync2_reg <= src_sync_sample_sync1_reg;
|
|
src_sync_sample_sync3_reg <= src_sync_sample_sync2_reg;
|
|
dest_sync_sample_sync1_reg <= dest_sync_reg;
|
|
dest_sync_sample_sync2_reg <= dest_sync_sample_sync1_reg;
|
|
dest_sync_sample_sync3_reg <= dest_sync_sample_sync2_reg;
|
|
end
|
|
|
|
reg edge_1_reg = 1'b0;
|
|
reg edge_2_reg = 1'b0;
|
|
|
|
reg [3:0] active_reg = 0;
|
|
|
|
always @(posedge sample_clk) begin
|
|
if (USE_SAMPLE_CLOCK) begin
|
|
// phase and frequency detector
|
|
if (dest_sync_sample_sync2_reg && !dest_sync_sample_sync3_reg) begin
|
|
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
|
|
edge_1_reg <= 1'b0;
|
|
edge_2_reg <= 1'b0;
|
|
end else begin
|
|
edge_1_reg <= !edge_2_reg;
|
|
edge_2_reg <= 1'b0;
|
|
end
|
|
end else if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
|
|
edge_1_reg <= 1'b0;
|
|
edge_2_reg <= !edge_1_reg;
|
|
end
|
|
|
|
// accumulator
|
|
sample_acc_reg <= $signed(sample_acc_reg) + $signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg});
|
|
|
|
sample_cnt_reg <= sample_cnt_reg + 1;
|
|
|
|
if (src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg) begin
|
|
active_reg[0] <= 1'b1;
|
|
end
|
|
|
|
if (sample_cnt_reg == 0) begin
|
|
active_reg <= {active_reg, src_sync_sample_sync2_reg && !src_sync_sample_sync3_reg};
|
|
sample_acc_reg <= $signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg});
|
|
sample_acc_out_reg <= sample_acc_reg;
|
|
if (active_reg != 0) begin
|
|
sample_update_reg <= !sample_update_reg;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
always @(posedge output_clk) begin
|
|
sample_update_sync1_reg <= sample_update_reg;
|
|
sample_update_sync2_reg <= sample_update_sync1_reg;
|
|
sample_update_sync3_reg <= sample_update_sync2_reg;
|
|
end
|
|
|
|
reg [SAMPLE_ACC_WIDTH-1:0] sample_acc_sync_reg = 0;
|
|
reg sample_acc_sync_valid_reg = 0;
|
|
|
|
always @(posedge output_clk) begin
|
|
if (USE_SAMPLE_CLOCK) begin
|
|
// latch in synchronized counts from phase detector
|
|
sample_acc_sync_valid_reg <= 1'b0;
|
|
if (sample_update_sync2_reg ^ sample_update_sync3_reg) begin
|
|
sample_acc_sync_reg <= sample_acc_out_reg;
|
|
sample_acc_sync_valid_reg <= 1'b1;
|
|
end
|
|
end else begin
|
|
// phase and frequency detector
|
|
if (dest_sync_sync2_reg && !dest_sync_sync3_reg) begin
|
|
if (src_sync_sync2_reg && !src_sync_sync3_reg) begin
|
|
edge_1_reg <= 1'b0;
|
|
edge_2_reg <= 1'b0;
|
|
end else begin
|
|
edge_1_reg <= !edge_2_reg;
|
|
edge_2_reg <= 1'b0;
|
|
end
|
|
end else if (src_sync_sync2_reg && !src_sync_sync3_reg) begin
|
|
edge_1_reg <= 1'b0;
|
|
edge_2_reg <= !edge_1_reg;
|
|
end
|
|
|
|
// accumulator
|
|
sample_acc_reg <= $signed(sample_acc_reg) + $signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg});
|
|
|
|
sample_cnt_reg <= sample_cnt_reg + 1;
|
|
|
|
if (src_sync_sync2_reg && !src_sync_sync3_reg) begin
|
|
active_reg[0] <= 1'b1;
|
|
end
|
|
|
|
sample_acc_sync_valid_reg <= 1'b0;
|
|
if (sample_cnt_reg == 0) begin
|
|
active_reg <= {active_reg, src_sync_sync2_reg && !src_sync_sync3_reg};
|
|
sample_acc_reg <= $signed({1'b0, edge_2_reg}) - $signed({1'b0, edge_1_reg});
|
|
sample_acc_sync_reg <= sample_acc_reg;
|
|
if (active_reg != 0) begin
|
|
sample_acc_sync_valid_reg <= 1'b1;
|
|
end
|
|
end
|
|
end
|
|
end
|
|
|
|
reg [PHASE_ACC_WIDTH-1:0] dest_err_int_reg = 0, dest_err_int_next = 0;
|
|
reg [1:0] dest_ovf;
|
|
|
|
reg [DEST_SYNC_LOCK_WIDTH-1:0] dest_sync_lock_count_reg = 0, dest_sync_lock_count_next;
|
|
reg dest_sync_locked_reg = 1'b0, dest_sync_locked_next;
|
|
|
|
always @* begin
|
|
{dest_update_next, dest_phase_next} = dest_phase_reg + dest_phase_inc_reg;
|
|
dest_phase_inc_next = dest_phase_inc_reg;
|
|
|
|
dest_err_int_next = dest_err_int_reg;
|
|
|
|
dest_sync_lock_count_next = dest_sync_lock_count_reg;
|
|
dest_sync_locked_next = dest_sync_locked_reg;
|
|
|
|
if (sample_acc_sync_valid_reg) begin
|
|
// updated sampled dest_phase error
|
|
|
|
// time integral of error
|
|
if (dest_sync_locked_reg) begin
|
|
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + $signed(sample_acc_sync_reg);
|
|
end else begin
|
|
{dest_ovf, dest_err_int_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**6);
|
|
end
|
|
|
|
// saturate
|
|
if (dest_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
dest_err_int_next = {PHASE_ACC_WIDTH{1'b0}};
|
|
end else if (dest_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
dest_err_int_next = {PHASE_ACC_WIDTH{1'b1}};
|
|
end
|
|
|
|
// compute output
|
|
if (dest_sync_locked_reg) begin
|
|
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**4);
|
|
end else begin
|
|
{dest_ovf, dest_phase_inc_next} = $signed({1'b0, dest_err_int_reg}) + ($signed(sample_acc_sync_reg) * 2**10);
|
|
end
|
|
|
|
// saturate
|
|
if (dest_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
dest_phase_inc_next = {PHASE_ACC_WIDTH{1'b0}};
|
|
end else if (dest_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
dest_phase_inc_next = {PHASE_ACC_WIDTH{1'b1}};
|
|
end
|
|
|
|
// locked status
|
|
if ($signed(sample_acc_sync_reg[SAMPLE_ACC_WIDTH-1:2]) == 0 || $signed(sample_acc_sync_reg[SAMPLE_ACC_WIDTH-1:1]) == -1) begin
|
|
if (dest_sync_lock_count_reg == {DEST_SYNC_LOCK_WIDTH{1'b1}}) begin
|
|
dest_sync_locked_next = 1'b1;
|
|
end else begin
|
|
dest_sync_lock_count_next = dest_sync_lock_count_reg + 1;
|
|
end
|
|
end else begin
|
|
dest_sync_lock_count_next = 0;
|
|
dest_sync_locked_next = 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
reg ts_sync_valid_reg = 1'b0;
|
|
reg ts_capt_valid_reg = 1'b0;
|
|
|
|
always @(posedge output_clk) begin
|
|
dest_phase_reg <= dest_phase_next;
|
|
dest_phase_inc_reg <= dest_phase_inc_next;
|
|
dest_update_reg <= dest_update_next;
|
|
|
|
if (dest_update_reg) begin
|
|
// capture local TS
|
|
if (PIPELINE_OUTPUT > 0) begin
|
|
dest_ts_s_capt_reg <= ts_s_pipe_reg[PIPELINE_OUTPUT-1];
|
|
dest_ts_ns_capt_reg <= ts_ns_pipe_reg[PIPELINE_OUTPUT-1];
|
|
dest_ts_fns_capt_reg <= ts_fns_pipe_reg[PIPELINE_OUTPUT-1];
|
|
end else begin
|
|
dest_ts_s_capt_reg <= ts_s_reg;
|
|
dest_ts_ns_capt_reg <= ts_ns_reg;
|
|
dest_ts_fns_capt_reg <= ts_fns_reg;
|
|
end
|
|
|
|
dest_sync_reg <= !dest_sync_reg;
|
|
ts_capt_valid_reg <= 1'b1;
|
|
end
|
|
|
|
ts_sync_valid_reg <= 1'b0;
|
|
|
|
if (src_sync_sync2_reg ^ src_sync_sync3_reg) begin
|
|
// store captured source TS
|
|
if (TS_WIDTH == 96) begin
|
|
ts_s_sync_reg <= src_ts_s_capt_reg;
|
|
end
|
|
ts_ns_sync_reg <= src_ts_ns_capt_reg;
|
|
ts_fns_sync_reg <= src_ts_fns_capt_reg;
|
|
ts_step_sync_reg <= src_ts_step_capt_reg;
|
|
|
|
ts_sync_valid_reg <= ts_capt_valid_reg;
|
|
ts_capt_valid_reg <= 1'b0;
|
|
end
|
|
|
|
dest_err_int_reg <= dest_err_int_next;
|
|
|
|
dest_sync_lock_count_reg <= dest_sync_lock_count_next;
|
|
dest_sync_locked_reg <= dest_sync_locked_next;
|
|
|
|
if (output_rst) begin
|
|
dest_phase_reg <= {PHASE_ACC_WIDTH{1'b0}};
|
|
dest_phase_inc_reg <= {PHASE_ACC_WIDTH{1'b0}};
|
|
dest_sync_reg <= 1'b0;
|
|
dest_update_reg <= 1'b0;
|
|
|
|
dest_err_int_reg <= 0;
|
|
|
|
dest_sync_lock_count_reg <= 0;
|
|
dest_sync_locked_reg <= 1'b0;
|
|
|
|
ts_sync_valid_reg <= 1'b0;
|
|
ts_capt_valid_reg <= 1'b0;
|
|
end
|
|
end
|
|
|
|
parameter TIME_ERR_INT_WIDTH = NS_WIDTH+FNS_WIDTH+16;
|
|
|
|
reg sec_mismatch_reg = 1'b0, sec_mismatch_next;
|
|
reg diff_valid_reg = 1'b0, diff_valid_next;
|
|
reg diff_corr_valid_reg = 1'b0, diff_corr_valid_next;
|
|
|
|
reg ts_s_msb_diff_reg = 1'b0, ts_s_msb_diff_next;
|
|
reg [7:0] ts_s_diff_reg = 0, ts_s_diff_next;
|
|
reg [TS_NS_WIDTH+1-1:0] ts_ns_diff_reg = 0, ts_ns_diff_next;
|
|
reg [FNS_WIDTH-1:0] ts_fns_diff_reg = 0, ts_fns_diff_next;
|
|
|
|
reg [16:0] ts_ns_diff_corr_reg = 0, ts_ns_diff_corr_next;
|
|
reg [FNS_WIDTH-1:0] ts_fns_diff_corr_reg = 0, ts_fns_diff_corr_next;
|
|
|
|
reg [TIME_ERR_INT_WIDTH-1:0] time_err_int_reg = 0, time_err_int_next;
|
|
|
|
reg [1:0] ptp_ovf;
|
|
|
|
reg [PTP_LOCK_WIDTH-1:0] ptp_lock_count_reg = 0, ptp_lock_count_next;
|
|
reg ptp_locked_reg = 1'b0, ptp_locked_next;
|
|
|
|
assign locked = ptp_locked_reg && dest_sync_locked_reg;
|
|
|
|
always @* begin
|
|
period_ns_next = period_ns_reg;
|
|
period_fns_next = period_fns_reg;
|
|
|
|
ts_s_next = ts_s_reg;
|
|
ts_ns_next = ts_ns_reg;
|
|
ts_fns_next = ts_fns_reg;
|
|
ts_ns_inc_next = ts_ns_inc_reg;
|
|
ts_fns_inc_next = ts_fns_inc_reg;
|
|
ts_ns_ovf_next = ts_ns_ovf_reg;
|
|
ts_fns_ovf_next = ts_fns_ovf_reg;
|
|
|
|
ts_step_next = 0;
|
|
|
|
diff_valid_next = 1'b0;
|
|
diff_corr_valid_next = 1'b0;
|
|
|
|
sec_mismatch_next = sec_mismatch_reg;
|
|
diff_valid_next = 1'b0;
|
|
diff_corr_valid_next = 1'b0;
|
|
|
|
ts_s_msb_diff_next = ts_s_msb_diff_reg;
|
|
ts_s_diff_next = ts_s_diff_reg;
|
|
ts_ns_diff_next = ts_ns_diff_reg;
|
|
ts_fns_diff_next = ts_fns_diff_reg;
|
|
|
|
ts_ns_diff_corr_next = ts_ns_diff_corr_reg;
|
|
ts_fns_diff_corr_next = ts_fns_diff_corr_reg;
|
|
|
|
time_err_int_next = time_err_int_reg;
|
|
|
|
ptp_lock_count_next = ptp_lock_count_reg;
|
|
ptp_locked_next = ptp_locked_reg;
|
|
|
|
// PTP clock
|
|
{period_ns_delay_next, period_fns_delay_next} = {period_ns_reg, period_fns_reg};
|
|
{period_ns_ovf_next, period_fns_ovf_next} = {NS_PER_S, {FNS_WIDTH{1'b0}}} - {period_ns_reg, period_fns_reg};
|
|
|
|
if (TS_WIDTH == 96) begin
|
|
// 96 bit timestamp
|
|
{ts_ns_inc_next, ts_fns_inc_next} = {ts_ns_inc_reg, ts_fns_inc_reg} + {period_ns_delay_reg, period_fns_delay_reg};
|
|
{ts_ns_ovf_next, ts_fns_ovf_next} = {ts_ns_inc_reg, ts_fns_inc_reg} - {period_ns_ovf_reg, period_fns_ovf_reg};
|
|
{ts_ns_next, ts_fns_next} = {ts_ns_inc_reg, ts_fns_inc_reg};
|
|
|
|
if (!ts_ns_ovf_reg[30]) begin
|
|
// if the overflow lookahead did not borrow, one second has elapsed
|
|
// increment seconds field, pre-compute normal increment, force overflow lookahead borrow bit set
|
|
{ts_ns_inc_next, ts_fns_inc_next} = {ts_ns_ovf_reg, ts_fns_ovf_reg} + {period_ns_delay_reg, period_fns_delay_reg};
|
|
ts_ns_ovf_next[30] = 1'b1;
|
|
{ts_ns_next, ts_fns_next} = {ts_ns_ovf_reg, ts_fns_ovf_reg};
|
|
ts_s_next = ts_s_reg + 1;
|
|
end
|
|
end else if (TS_WIDTH == 64) begin
|
|
// 64 bit timestamp
|
|
{ts_ns_next, ts_fns_next} = {ts_ns_reg, ts_fns_reg} + {period_ns_reg, period_fns_reg};
|
|
end
|
|
|
|
if (ts_sync_valid_reg) begin
|
|
// Read new value
|
|
if (TS_WIDTH == 96) begin
|
|
if (ts_step_sync_reg || sec_mismatch_reg) begin
|
|
// input stepped
|
|
sec_mismatch_next = 1'b0;
|
|
|
|
ts_s_next = ts_s_sync_reg;
|
|
ts_ns_next = ts_ns_sync_reg;
|
|
ts_ns_inc_next = ts_ns_sync_reg;
|
|
ts_ns_ovf_next[30] = 1'b1;
|
|
ts_fns_next = ts_fns_sync_reg;
|
|
ts_fns_inc_next = ts_fns_sync_reg;
|
|
ts_step_next = 1;
|
|
end else begin
|
|
// input did not step
|
|
sec_mismatch_next = 1'b0;
|
|
diff_valid_next = 1'b1;
|
|
end
|
|
// compute difference
|
|
ts_s_msb_diff_next = ts_s_sync_reg[47:8] != dest_ts_s_capt_reg[47:8];
|
|
ts_s_diff_next = ts_s_sync_reg[7:0] - dest_ts_s_capt_reg[7:0];
|
|
{ts_ns_diff_next, ts_fns_diff_next} = {ts_ns_sync_reg, ts_fns_sync_reg} - {dest_ts_ns_capt_reg, dest_ts_fns_capt_reg};
|
|
end else if (TS_WIDTH == 64) begin
|
|
if (ts_step_sync_reg || sec_mismatch_reg) begin
|
|
// input stepped
|
|
sec_mismatch_next = 1'b0;
|
|
|
|
ts_ns_next = ts_ns_sync_reg;
|
|
ts_fns_next = ts_fns_sync_reg;
|
|
ts_step_next = 1;
|
|
end else begin
|
|
// input did not step
|
|
sec_mismatch_next = 1'b0;
|
|
diff_valid_next = 1'b1;
|
|
end
|
|
// compute difference
|
|
{ts_ns_diff_next, ts_fns_diff_next} = {ts_ns_sync_reg, ts_fns_sync_reg} - {dest_ts_ns_capt_reg, dest_ts_fns_capt_reg};
|
|
end
|
|
end
|
|
|
|
if (diff_valid_reg) begin
|
|
// seconds field correction
|
|
if (TS_WIDTH == 96) begin
|
|
if ($signed(ts_s_diff_reg) == 0 && ts_s_msb_diff_reg == 0 && ($signed(ts_ns_diff_reg[30:16]) == 0 || $signed(ts_ns_diff_reg[30:16]) == -1)) begin
|
|
// difference is small and no seconds difference; slew
|
|
ts_ns_diff_corr_next = ts_ns_diff_reg[16:0];
|
|
ts_fns_diff_corr_next = ts_fns_diff_reg;
|
|
diff_corr_valid_next = 1'b1;
|
|
end else if ($signed(ts_s_diff_reg) == 1 && ts_ns_diff_reg[30:16] == ~NS_PER_S[30:16]) begin
|
|
// difference is small with 1 second difference; adjust and slew
|
|
ts_ns_diff_corr_next = ts_ns_diff_reg[16:0] + NS_PER_S[16:0];
|
|
ts_fns_diff_corr_next = ts_fns_diff_reg;
|
|
diff_corr_valid_next = 1'b1;
|
|
end else if ($signed(ts_s_diff_reg) == -1 && ts_ns_diff_reg[30:16] == NS_PER_S[30:16]) begin
|
|
// difference is small with 1 second difference; adjust and slew
|
|
ts_ns_diff_corr_next = ts_ns_diff_reg[16:0] - NS_PER_S[16:0];
|
|
ts_fns_diff_corr_next = ts_fns_diff_reg;
|
|
diff_corr_valid_next = 1'b1;
|
|
end else begin
|
|
// difference is too large; step the clock
|
|
sec_mismatch_next = 1'b1;
|
|
end
|
|
end else if (TS_WIDTH == 64) begin
|
|
if ($signed(ts_ns_diff_reg[47:16]) == 0 || $signed(ts_ns_diff_reg[47:16]) == -1) begin
|
|
// difference is small enough to slew
|
|
ts_ns_diff_corr_next = ts_ns_diff_reg[16:0];
|
|
ts_fns_diff_corr_next = ts_fns_diff_reg;
|
|
diff_corr_valid_next = 1'b1;
|
|
end else begin
|
|
// difference is too large; step the clock
|
|
sec_mismatch_next = 1'b1;
|
|
end
|
|
end
|
|
end
|
|
|
|
if (diff_corr_valid_reg) begin
|
|
// PI control
|
|
|
|
// time integral of error
|
|
if (ptp_locked_reg) begin
|
|
{ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + $signed({ts_ns_diff_corr_reg, ts_fns_diff_corr_reg});
|
|
end else begin
|
|
{ptp_ovf, time_err_int_next} = $signed({1'b0, time_err_int_reg}) + ($signed({ts_ns_diff_corr_reg, ts_fns_diff_corr_reg}) * 2**3);
|
|
end
|
|
|
|
// saturate
|
|
if (ptp_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
time_err_int_next = {TIME_ERR_INT_WIDTH{1'b0}};
|
|
end else if (ptp_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
time_err_int_next = {TIME_ERR_INT_WIDTH{1'b1}};
|
|
end
|
|
|
|
// compute output
|
|
if (ptp_locked_reg) begin
|
|
{ptp_ovf, period_ns_next, period_fns_next} = ($signed({1'b0, time_err_int_reg}) / 2**16) + ($signed({ts_ns_diff_corr_reg, ts_fns_diff_corr_reg}) / 2**10);
|
|
end else begin
|
|
{ptp_ovf, period_ns_next, period_fns_next} = ($signed({1'b0, time_err_int_reg}) / 2**16) + ($signed({ts_ns_diff_corr_reg, ts_fns_diff_corr_reg}) / 2**7);
|
|
end
|
|
|
|
// saturate
|
|
if (ptp_ovf[1]) begin
|
|
// sign bit set indicating underflow across zero; saturate to zero
|
|
{period_ns_next, period_fns_next} = {NS_WIDTH+FNS_WIDTH{1'b0}};
|
|
end else if (ptp_ovf[0]) begin
|
|
// sign bit clear but carry bit set indicating overflow; saturate to all 1
|
|
{period_ns_next, period_fns_next} = {NS_WIDTH+FNS_WIDTH{1'b1}};
|
|
end
|
|
|
|
// adjust period if integrator is saturated
|
|
if (time_err_int_reg == 0) begin
|
|
{period_ns_next, period_fns_next} = {NS_WIDTH+FNS_WIDTH{1'b0}};
|
|
end else if (~time_err_int_reg == 0) begin
|
|
{period_ns_next, period_fns_next} = {NS_WIDTH+FNS_WIDTH{1'b1}};
|
|
end
|
|
|
|
// locked status
|
|
if ($signed(ts_ns_diff_corr_reg[17-1:4]) == 0 || $signed(ts_ns_diff_corr_reg[17-1:4]) == -1) begin
|
|
if (ptp_lock_count_reg == {PTP_LOCK_WIDTH{1'b1}}) begin
|
|
ptp_locked_next = 1'b1;
|
|
end else begin
|
|
ptp_lock_count_next = ptp_lock_count_reg + 1;
|
|
end
|
|
end else begin
|
|
ptp_lock_count_next = 0;
|
|
ptp_locked_next = 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
always @(posedge output_clk) begin
|
|
period_ns_reg <= period_ns_next;
|
|
period_fns_reg <= period_fns_next;
|
|
period_ns_delay_reg <= period_ns_delay_next;
|
|
period_fns_delay_reg <= period_fns_delay_next;
|
|
period_ns_ovf_reg <= period_ns_ovf_next;
|
|
period_fns_ovf_reg <= period_fns_ovf_next;
|
|
|
|
ts_s_reg <= ts_s_next;
|
|
ts_ns_reg <= ts_ns_next;
|
|
ts_fns_reg <= ts_fns_next;
|
|
ts_ns_inc_reg <= ts_ns_inc_next;
|
|
ts_fns_inc_reg <= ts_fns_inc_next;
|
|
ts_ns_ovf_reg <= ts_ns_ovf_next;
|
|
ts_fns_ovf_reg <= ts_fns_ovf_next;
|
|
|
|
ts_step_reg <= ts_step_next;
|
|
|
|
sec_mismatch_reg <= sec_mismatch_next;
|
|
diff_valid_reg <= diff_valid_next;
|
|
diff_corr_valid_reg <= diff_corr_valid_next;
|
|
|
|
ts_s_msb_diff_reg <= ts_s_msb_diff_next;
|
|
ts_s_diff_reg <= ts_s_diff_next;
|
|
ts_ns_diff_reg <= ts_ns_diff_next;
|
|
ts_fns_diff_reg <= ts_fns_diff_next;
|
|
|
|
ts_ns_diff_corr_reg <= ts_ns_diff_corr_next;
|
|
ts_fns_diff_corr_reg <= ts_fns_diff_corr_next;
|
|
|
|
time_err_int_reg <= time_err_int_next;
|
|
|
|
ptp_lock_count_reg <= ptp_lock_count_next;
|
|
ptp_locked_reg <= ptp_locked_next;
|
|
|
|
// PPS output
|
|
if (TS_WIDTH == 96) begin
|
|
pps_reg <= !ts_ns_ovf_reg[30];
|
|
end else if (TS_WIDTH == 64) begin
|
|
pps_reg <= 1'b0; // not currently implemented for 64 bit timestamp format
|
|
end
|
|
|
|
// pipeline
|
|
if (PIPELINE_OUTPUT > 0) begin
|
|
ts_s_pipe_reg[0] <= ts_s_reg;
|
|
ts_ns_pipe_reg[0] <= ts_ns_reg;
|
|
ts_fns_pipe_reg[0] <= ts_fns_reg;
|
|
ts_step_pipe_reg[0] <= ts_step_reg;
|
|
pps_pipe_reg[0] <= pps_reg;
|
|
|
|
for (i = 0; i < PIPELINE_OUTPUT-1; i = i + 1) begin
|
|
ts_s_pipe_reg[i+1] <= ts_s_pipe_reg[i];
|
|
ts_ns_pipe_reg[i+1] <= ts_ns_pipe_reg[i];
|
|
ts_fns_pipe_reg[i+1] <= ts_fns_pipe_reg[i];
|
|
ts_step_pipe_reg[i+1] <= ts_step_pipe_reg[i];
|
|
pps_pipe_reg[i+1] <= pps_pipe_reg[i];
|
|
end
|
|
end
|
|
|
|
if (output_rst) begin
|
|
period_ns_reg <= 0;
|
|
period_fns_reg <= 0;
|
|
period_ns_delay_reg <= 0;
|
|
period_fns_delay_reg <= 0;
|
|
period_ns_ovf_reg <= 0;
|
|
period_fns_ovf_reg <= 0;
|
|
ts_s_reg <= 0;
|
|
ts_ns_reg <= 0;
|
|
ts_fns_reg <= 0;
|
|
ts_ns_inc_reg <= 0;
|
|
ts_fns_inc_reg <= 0;
|
|
ts_ns_ovf_reg[30] <= 1'b1;
|
|
ts_step_reg <= 0;
|
|
pps_reg <= 0;
|
|
|
|
sec_mismatch_reg <= 1'b0;
|
|
diff_valid_reg <= 1'b0;
|
|
diff_corr_valid_reg <= 1'b0;
|
|
|
|
time_err_int_reg <= 0;
|
|
|
|
ptp_lock_count_reg <= 0;
|
|
ptp_locked_reg <= 1'b0;
|
|
|
|
for (i = 0; i < PIPELINE_OUTPUT; i = i + 1) begin
|
|
ts_s_pipe_reg[i] <= 0;
|
|
ts_ns_pipe_reg[i] <= 0;
|
|
ts_fns_pipe_reg[i] <= 0;
|
|
ts_step_pipe_reg[i] <= 1'b0;
|
|
pps_pipe_reg[i] <= 1'b0;
|
|
end
|
|
end
|
|
end
|
|
|
|
endmodule
|
|
|
|
`resetall
|