1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_async_frame_fifo.v
2014-11-13 10:39:27 -08:00

169 lines
5.7 KiB
Verilog

/*
Copyright (c) 2014 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream asynchronous frame FIFO
*/
module axis_async_frame_fifo #
(
parameter ADDR_WIDTH = 12,
parameter DATA_WIDTH = 8
)
(
/*
* AXI input
*/
input wire input_clk,
input wire input_rst,
input wire [DATA_WIDTH-1:0] input_axis_tdata,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* AXI output
*/
input wire output_clk,
input wire output_rst,
output wire [DATA_WIDTH-1:0] output_axis_tdata,
output wire output_axis_tvalid,
input wire output_axis_tready,
output wire output_axis_tlast
);
reg [ADDR_WIDTH:0] wr_ptr = {ADDR_WIDTH+1{1'b0}}, wr_ptr_next;
reg [ADDR_WIDTH:0] wr_ptr_cur = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr = {ADDR_WIDTH+1{1'b0}}, rd_ptr_next;
reg [ADDR_WIDTH:0] rd_ptr_gray = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray_sync1 = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray_sync2 = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] wr_ptr_gray_sync3 = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_sync1 = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_sync2 = {ADDR_WIDTH+1{1'b0}};
reg [ADDR_WIDTH:0] rd_ptr_gray_sync3 = {ADDR_WIDTH+1{1'b0}};
reg [DATA_WIDTH+2-1:0] data_out_reg = {1'b0, {DATA_WIDTH{1'b0}}};
//(* RAM_STYLE="BLOCK" *)
reg [DATA_WIDTH+2-1:0] mem[(2**ADDR_WIDTH)-1:0];
reg output_read = 1'b0;
reg output_axis_tvalid_reg = 1'b0;
wire [DATA_WIDTH+2-1:0] data_in = {input_axis_tlast, input_axis_tdata};
// full when first TWO MSBs do NOT match, but rest matches
// (gray code equivalent of first MSB different but rest same)
wire full = ((wr_ptr_gray[ADDR_WIDTH] != rd_ptr_gray_sync3[ADDR_WIDTH]) &&
(wr_ptr_gray[ADDR_WIDTH-1] != rd_ptr_gray_sync3[ADDR_WIDTH-1]) &&
(wr_ptr_gray[ADDR_WIDTH-2:0] == rd_ptr_gray_sync3[ADDR_WIDTH-2:0]));
// empty when pointers match exactly
wire empty = rd_ptr_gray == wr_ptr_gray_sync3;
// overflow in single packet
wire full_cur = ((wr_ptr[ADDR_WIDTH] != wr_ptr_cur[ADDR_WIDTH]) &&
(wr_ptr[ADDR_WIDTH-1:0] == wr_ptr_cur[ADDR_WIDTH-1:0]));
wire write = input_axis_tvalid & ~full;
wire read = (output_axis_tready | ~output_axis_tvalid_reg) & ~empty;
assign {output_axis_tlast, output_axis_tdata} = data_out_reg;
assign input_axis_tready = ~full;
assign output_axis_tvalid = output_axis_tvalid_reg;
// write
always @(posedge input_clk or posedge input_rst) begin
if (input_rst) begin
wr_ptr <= 0;
end else if (write) begin
if (full_cur) begin
// buffer full, hold current pointer, drop packet at end
if (input_axis_tlast) begin
wr_ptr_cur <= wr_ptr;
end
end else begin
mem[wr_ptr_cur[ADDR_WIDTH-1:0]] <= data_in;
wr_ptr_cur <= wr_ptr_cur + 1;
if (input_axis_tlast) begin
if (input_axis_tuser) begin
// bad packet, reset write pointer
wr_ptr_cur <= wr_ptr;
end else begin
// good packet, push new write pointer
wr_ptr_next = wr_ptr_cur + 1;
wr_ptr <= wr_ptr_next;
wr_ptr_gray <= wr_ptr_next ^ (wr_ptr_next >> 1);
end
end
end
end
end
// pointer synchronization in SRL16
always @(posedge input_clk) begin
rd_ptr_gray_sync1 <= rd_ptr_gray;
rd_ptr_gray_sync2 <= rd_ptr_gray_sync1;
rd_ptr_gray_sync3 <= rd_ptr_gray_sync2;
end
// read
always @(posedge output_clk or posedge output_rst) begin
if (output_rst) begin
rd_ptr <= 0;
end else if (read) begin
data_out_reg <= mem[rd_ptr[ADDR_WIDTH-1:0]];
rd_ptr_next = rd_ptr + 1;
rd_ptr <= rd_ptr_next;
rd_ptr_gray <= rd_ptr_next ^ (rd_ptr_next >> 1);
end
end
// pointer synchronization in SRL16
always @(posedge output_clk) begin
wr_ptr_gray_sync1 <= wr_ptr_gray;
wr_ptr_gray_sync2 <= wr_ptr_gray_sync1;
wr_ptr_gray_sync3 <= wr_ptr_gray_sync2;
end
// source ready output
always @(posedge output_clk or posedge output_rst) begin
if (output_rst) begin
output_axis_tvalid_reg <= 1'b0;
end else if (output_axis_tready | ~output_axis_tvalid_reg) begin
output_axis_tvalid_reg <= ~empty;
end else begin
output_axis_tvalid_reg <= output_axis_tvalid_reg;
end
end
endmodule