1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/axis_demux_4.v
2014-11-16 01:38:20 -08:00

254 lines
9.2 KiB
Verilog

/*
Copyright (c) 2014 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`timescale 1ns / 1ps
/*
* AXI4-Stream 4 port demultiplexer
*/
module axis_demux_4 #
(
parameter DATA_WIDTH = 8
)
(
input wire clk,
input wire rst,
/*
* AXI input
*/
input wire [DATA_WIDTH-1:0] input_axis_tdata,
input wire input_axis_tvalid,
output wire input_axis_tready,
input wire input_axis_tlast,
input wire input_axis_tuser,
/*
* AXI outputs
*/
output wire [DATA_WIDTH-1:0] output_0_axis_tdata,
output wire output_0_axis_tvalid,
input wire output_0_axis_tready,
output wire output_0_axis_tlast,
output wire output_0_axis_tuser,
output wire [DATA_WIDTH-1:0] output_1_axis_tdata,
output wire output_1_axis_tvalid,
input wire output_1_axis_tready,
output wire output_1_axis_tlast,
output wire output_1_axis_tuser,
output wire [DATA_WIDTH-1:0] output_2_axis_tdata,
output wire output_2_axis_tvalid,
input wire output_2_axis_tready,
output wire output_2_axis_tlast,
output wire output_2_axis_tuser,
output wire [DATA_WIDTH-1:0] output_3_axis_tdata,
output wire output_3_axis_tvalid,
input wire output_3_axis_tready,
output wire output_3_axis_tlast,
output wire output_3_axis_tuser,
/*
* Control
*/
input wire enable,
input wire [1:0] select
);
reg [1:0] select_reg = 0, select_next;
reg frame_reg = 0, frame_next;
reg input_axis_tready_reg = 0, input_axis_tready_next;
// internal datapath
reg [DATA_WIDTH-1:0] output_axis_tdata_int;
reg output_axis_tvalid_int;
reg output_axis_tready_int = 0;
reg output_axis_tlast_int;
reg output_axis_tuser_int;
wire output_axis_tready_int_early;
assign input_axis_tready = input_axis_tready_reg;
// mux for output control signals
reg current_output_tready;
reg current_output_tvalid;
always @* begin
case (select_reg)
2'd0: begin
current_output_tvalid = output_0_axis_tvalid;
current_output_tready = output_0_axis_tready;
end
2'd1: begin
current_output_tvalid = output_1_axis_tvalid;
current_output_tready = output_1_axis_tready;
end
2'd2: begin
current_output_tvalid = output_2_axis_tvalid;
current_output_tready = output_2_axis_tready;
end
2'd3: begin
current_output_tvalid = output_3_axis_tvalid;
current_output_tready = output_3_axis_tready;
end
endcase
end
always @* begin
select_next = select_reg;
frame_next = frame_reg;
input_axis_tready_next = 0;
if (frame_reg) begin
if (input_axis_tvalid & input_axis_tready) begin
// end of frame detection
frame_next = ~input_axis_tlast;
end
end else if (enable & input_axis_tvalid & ~current_output_tvalid) begin
// start of frame, grab select value
frame_next = 1;
select_next = select;
end
input_axis_tready_next = output_axis_tready_int_early & frame_next;
output_axis_tdata_int = input_axis_tdata;
output_axis_tvalid_int = input_axis_tvalid & input_axis_tready;
output_axis_tlast_int = input_axis_tlast;
output_axis_tuser_int = input_axis_tuser;
end
always @(posedge clk or posedge rst) begin
if (rst) begin
select_reg <= 0;
frame_reg <= 0;
input_axis_tready_reg <= 0;
end else begin
select_reg <= select_next;
frame_reg <= frame_next;
input_axis_tready_reg <= input_axis_tready_next;
end
end
// output datapath logic
reg [DATA_WIDTH-1:0] output_axis_tdata_reg = 0;
reg output_0_axis_tvalid_reg = 0;
reg output_1_axis_tvalid_reg = 0;
reg output_2_axis_tvalid_reg = 0;
reg output_3_axis_tvalid_reg = 0;
reg output_axis_tlast_reg = 0;
reg output_axis_tuser_reg = 0;
reg [DATA_WIDTH-1:0] temp_axis_tdata_reg = 0;
reg temp_axis_tvalid_reg = 0;
reg temp_axis_tlast_reg = 0;
reg temp_axis_tuser_reg = 0;
assign output_0_axis_tdata = output_axis_tdata_reg;
assign output_0_axis_tvalid = output_0_axis_tvalid_reg;
assign output_0_axis_tlast = output_axis_tlast_reg;
assign output_0_axis_tuser = output_axis_tuser_reg;
assign output_1_axis_tdata = output_axis_tdata_reg;
assign output_1_axis_tvalid = output_1_axis_tvalid_reg;
assign output_1_axis_tlast = output_axis_tlast_reg;
assign output_1_axis_tuser = output_axis_tuser_reg;
assign output_2_axis_tdata = output_axis_tdata_reg;
assign output_2_axis_tvalid = output_2_axis_tvalid_reg;
assign output_2_axis_tlast = output_axis_tlast_reg;
assign output_2_axis_tuser = output_axis_tuser_reg;
assign output_3_axis_tdata = output_axis_tdata_reg;
assign output_3_axis_tvalid = output_3_axis_tvalid_reg;
assign output_3_axis_tlast = output_axis_tlast_reg;
assign output_3_axis_tuser = output_axis_tuser_reg;
// enable ready input next cycle if output is ready or if there is space in both output registers or if there is space in the temp register that will not be filled next cycle
assign output_axis_tready_int_early = current_output_tready | (~temp_axis_tvalid_reg & ~current_output_tvalid) | (~temp_axis_tvalid_reg & ~output_axis_tvalid_int);
always @(posedge clk or posedge rst) begin
if (rst) begin
output_axis_tdata_reg <= 0;
output_0_axis_tvalid_reg <= 0;
output_1_axis_tvalid_reg <= 0;
output_2_axis_tvalid_reg <= 0;
output_3_axis_tvalid_reg <= 0;
output_axis_tlast_reg <= 0;
output_axis_tuser_reg <= 0;
output_axis_tready_int <= 0;
temp_axis_tdata_reg <= 0;
temp_axis_tvalid_reg <= 0;
temp_axis_tlast_reg <= 0;
temp_axis_tuser_reg <= 0;
end else begin
// transfer sink ready state to source
output_axis_tready_int <= output_axis_tready_int_early;
if (output_axis_tready_int) begin
// input is ready
if (current_output_tready | ~current_output_tvalid) begin
// output is ready or currently not valid, transfer data to output
output_axis_tdata_reg <= output_axis_tdata_int;
case (select_reg)
2'd0: output_0_axis_tvalid_reg <= output_axis_tvalid_int;
2'd1: output_1_axis_tvalid_reg <= output_axis_tvalid_int;
2'd2: output_2_axis_tvalid_reg <= output_axis_tvalid_int;
2'd3: output_3_axis_tvalid_reg <= output_axis_tvalid_int;
endcase
output_axis_tlast_reg <= output_axis_tlast_int;
output_axis_tuser_reg <= output_axis_tuser_int;
end else begin
// output is not ready, store input in temp
temp_axis_tdata_reg <= output_axis_tdata_int;
temp_axis_tvalid_reg <= output_axis_tvalid_int;
temp_axis_tlast_reg <= output_axis_tlast_int;
temp_axis_tuser_reg <= output_axis_tuser_int;
end
end else if (current_output_tready) begin
// input is not ready, but output is ready
output_axis_tdata_reg <= temp_axis_tdata_reg;
case (select_reg)
2'd0: output_0_axis_tvalid_reg <= temp_axis_tvalid_reg;
2'd1: output_1_axis_tvalid_reg <= temp_axis_tvalid_reg;
2'd2: output_2_axis_tvalid_reg <= temp_axis_tvalid_reg;
2'd3: output_3_axis_tvalid_reg <= temp_axis_tvalid_reg;
endcase
output_axis_tlast_reg <= temp_axis_tlast_reg;
output_axis_tuser_reg <= temp_axis_tuser_reg;
temp_axis_tdata_reg <= 0;
temp_axis_tvalid_reg <= 0;
temp_axis_tlast_reg <= 0;
temp_axis_tuser_reg <= 0;
end
end
end
endmodule