1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-30 08:32:52 +08:00
2021-10-20 17:29:12 -07:00

275 lines
5.6 KiB
Verilog

/*
Copyright (c) 2014-2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* FPGA top-level module
*/
module fpga (
/*
* Clock: 100MHz
* Reset: Push button, active low
*/
input wire clk,
input wire reset_n,
/*
* GPIO
*/
input wire [3:0] sw,
input wire [3:0] btn,
output wire led0_r,
output wire led0_g,
output wire led0_b,
output wire led1_r,
output wire led1_g,
output wire led1_b,
output wire led2_r,
output wire led2_g,
output wire led2_b,
output wire led3_r,
output wire led3_g,
output wire led3_b,
output wire led4,
output wire led5,
output wire led6,
output wire led7,
/*
* Ethernet: 100BASE-T MII
*/
output wire phy_ref_clk,
input wire phy_rx_clk,
input wire [3:0] phy_rxd,
input wire phy_rx_dv,
input wire phy_rx_er,
input wire phy_tx_clk,
output wire [3:0] phy_txd,
output wire phy_tx_en,
input wire phy_col,
input wire phy_crs,
output wire phy_reset_n,
/*
* UART: 500000 bps, 8N1
*/
input wire uart_rxd,
output wire uart_txd
);
// Clock and reset
wire clk_ibufg;
// Internal 125 MHz clock
wire clk_mmcm_out;
wire clk_int;
wire rst_int;
wire mmcm_rst = ~reset_n;
wire mmcm_locked;
wire mmcm_clkfb;
IBUFG
clk_ibufg_inst(
.I(clk),
.O(clk_ibufg)
);
wire clk_25mhz_mmcm_out;
wire clk_25mhz_int;
// MMCM instance
// 100 MHz in, 125 MHz out
// PFD range: 10 MHz to 550 MHz
// VCO range: 600 MHz to 1200 MHz
// M = 10, D = 1 sets Fvco = 1000 MHz (in range)
// Divide by 8 to get output frequency of 125 MHz
// Divide by 40 to get output frequency of 25 MHz
// 1000 / 5 = 200 MHz
MMCME2_BASE #(
.BANDWIDTH("OPTIMIZED"),
.CLKOUT0_DIVIDE_F(8),
.CLKOUT0_DUTY_CYCLE(0.5),
.CLKOUT0_PHASE(0),
.CLKOUT1_DIVIDE(40),
.CLKOUT1_DUTY_CYCLE(0.5),
.CLKOUT1_PHASE(0),
.CLKOUT2_DIVIDE(1),
.CLKOUT2_DUTY_CYCLE(0.5),
.CLKOUT2_PHASE(0),
.CLKOUT3_DIVIDE(1),
.CLKOUT3_DUTY_CYCLE(0.5),
.CLKOUT3_PHASE(0),
.CLKOUT4_DIVIDE(1),
.CLKOUT4_DUTY_CYCLE(0.5),
.CLKOUT4_PHASE(0),
.CLKOUT5_DIVIDE(1),
.CLKOUT5_DUTY_CYCLE(0.5),
.CLKOUT5_PHASE(0),
.CLKOUT6_DIVIDE(1),
.CLKOUT6_DUTY_CYCLE(0.5),
.CLKOUT6_PHASE(0),
.CLKFBOUT_MULT_F(10),
.CLKFBOUT_PHASE(0),
.DIVCLK_DIVIDE(1),
.REF_JITTER1(0.010),
.CLKIN1_PERIOD(10.0),
.STARTUP_WAIT("FALSE"),
.CLKOUT4_CASCADE("FALSE")
)
clk_mmcm_inst (
.CLKIN1(clk_ibufg),
.CLKFBIN(mmcm_clkfb),
.RST(mmcm_rst),
.PWRDWN(1'b0),
.CLKOUT0(clk_mmcm_out),
.CLKOUT0B(),
.CLKOUT1(clk_25mhz_mmcm_out),
.CLKOUT1B(),
.CLKOUT2(),
.CLKOUT2B(),
.CLKOUT3(),
.CLKOUT3B(),
.CLKOUT4(),
.CLKOUT5(),
.CLKOUT6(),
.CLKFBOUT(mmcm_clkfb),
.CLKFBOUTB(),
.LOCKED(mmcm_locked)
);
BUFG
clk_bufg_inst (
.I(clk_mmcm_out),
.O(clk_int)
);
BUFG
clk_25mhz_bufg_inst (
.I(clk_25mhz_mmcm_out),
.O(clk_25mhz_int)
);
sync_reset #(
.N(4)
)
sync_reset_inst (
.clk(clk_int),
.rst(~mmcm_locked),
.out(rst_int)
);
// GPIO
wire [3:0] btn_int;
wire [3:0] sw_int;
debounce_switch #(
.WIDTH(8),
.N(4),
.RATE(125000)
)
debounce_switch_inst (
.clk(clk_int),
.rst(rst_int),
.in({btn,
sw}),
.out({btn_int,
sw_int})
);
wire uart_rxd_int;
sync_signal #(
.WIDTH(1),
.N(2)
)
sync_signal_inst (
.clk(clk_int),
.in({uart_rxd}),
.out({uart_rxd_int})
);
assign phy_ref_clk = clk_25mhz_int;
fpga_core #(
.TARGET("XILINX")
)
core_inst (
/*
* Clock: 125MHz
* Synchronous reset
*/
.clk(clk_int),
.rst(rst_int),
/*
* GPIO
*/
.btn(btn_int),
.sw(sw_int),
.led0_r(led0_r),
.led0_g(led0_g),
.led0_b(led0_b),
.led1_r(led1_r),
.led1_g(led1_g),
.led1_b(led1_b),
.led2_r(led2_r),
.led2_g(led2_g),
.led2_b(led2_b),
.led3_r(led3_r),
.led3_g(led3_g),
.led3_b(led3_b),
.led4(led4),
.led5(led5),
.led6(led6),
.led7(led7),
/*
* Ethernet: 100BASE-T MII
*/
.phy_rx_clk(phy_rx_clk),
.phy_rxd(phy_rxd),
.phy_rx_dv(phy_rx_dv),
.phy_rx_er(phy_rx_er),
.phy_tx_clk(phy_tx_clk),
.phy_txd(phy_txd),
.phy_tx_en(phy_tx_en),
.phy_col(phy_col),
.phy_crs(phy_crs),
.phy_reset_n(phy_reset_n),
/*
* UART: 115200 bps, 8N1
*/
.uart_rxd(uart_rxd_int),
.uart_txd(uart_txd)
);
endmodule
`resetall