1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/rtl/pcie_us_axi_dma_rd.v
2021-10-31 21:57:26 -07:00

1865 lines
81 KiB
Verilog

/*
Copyright (c) 2018-2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Ultrascale PCIe AXI DMA Read
*/
module pcie_us_axi_dma_rd #
(
// Width of PCIe AXI stream interfaces in bits
parameter AXIS_PCIE_DATA_WIDTH = 256,
// PCIe AXI stream tkeep signal width (words per cycle)
parameter AXIS_PCIE_KEEP_WIDTH = (AXIS_PCIE_DATA_WIDTH/32),
// PCIe AXI stream RC tuser signal width
parameter AXIS_PCIE_RC_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 75 : 161,
// PCIe AXI stream RQ tuser signal width
parameter AXIS_PCIE_RQ_USER_WIDTH = AXIS_PCIE_DATA_WIDTH < 512 ? 60 : 137,
// RQ sequence number width
parameter RQ_SEQ_NUM_WIDTH = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 4 : 6,
// RQ sequence number tracking enable
parameter RQ_SEQ_NUM_ENABLE = 0,
// Width of AXI data bus in bits
parameter AXI_DATA_WIDTH = AXIS_PCIE_DATA_WIDTH,
// Width of AXI address bus in bits
parameter AXI_ADDR_WIDTH = 64,
// Width of AXI wstrb (width of data bus in words)
parameter AXI_STRB_WIDTH = (AXI_DATA_WIDTH/8),
// Width of AXI ID signal
parameter AXI_ID_WIDTH = 8,
// Maximum AXI burst length to generate
parameter AXI_MAX_BURST_LEN = 256,
// PCIe address width
parameter PCIE_ADDR_WIDTH = 64,
// PCIe tag count
parameter PCIE_TAG_COUNT = AXIS_PCIE_RQ_USER_WIDTH == 60 ? 64 : 256,
// Length field width
parameter LEN_WIDTH = 20,
// Tag field width
parameter TAG_WIDTH = 8,
// Operation table size
parameter OP_TABLE_SIZE = PCIE_TAG_COUNT,
// In-flight transmit limit
parameter TX_LIMIT = 2**(RQ_SEQ_NUM_WIDTH-1),
// Transmit flow control
parameter TX_FC_ENABLE = 0
)
(
input wire clk,
input wire rst,
/*
* AXI input (RC)
*/
input wire [AXIS_PCIE_DATA_WIDTH-1:0] s_axis_rc_tdata,
input wire [AXIS_PCIE_KEEP_WIDTH-1:0] s_axis_rc_tkeep,
input wire s_axis_rc_tvalid,
output wire s_axis_rc_tready,
input wire s_axis_rc_tlast,
input wire [AXIS_PCIE_RC_USER_WIDTH-1:0] s_axis_rc_tuser,
/*
* AXI output (RQ)
*/
output wire [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata,
output wire [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep,
output wire m_axis_rq_tvalid,
input wire m_axis_rq_tready,
output wire m_axis_rq_tlast,
output wire [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser,
/*
* Transmit sequence number input
*/
input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_0,
input wire s_axis_rq_seq_num_valid_0,
input wire [RQ_SEQ_NUM_WIDTH-1:0] s_axis_rq_seq_num_1,
input wire s_axis_rq_seq_num_valid_1,
/*
* Transmit flow control
*/
input wire [7:0] pcie_tx_fc_nph_av,
/*
* AXI read descriptor input
*/
input wire [PCIE_ADDR_WIDTH-1:0] s_axis_read_desc_pcie_addr,
input wire [AXI_ADDR_WIDTH-1:0] s_axis_read_desc_axi_addr,
input wire [LEN_WIDTH-1:0] s_axis_read_desc_len,
input wire [TAG_WIDTH-1:0] s_axis_read_desc_tag,
input wire s_axis_read_desc_valid,
output wire s_axis_read_desc_ready,
/*
* AXI read descriptor status output
*/
output wire [TAG_WIDTH-1:0] m_axis_read_desc_status_tag,
output wire [3:0] m_axis_read_desc_status_error,
output wire m_axis_read_desc_status_valid,
/*
* AXI master interface
*/
output wire [AXI_ID_WIDTH-1:0] m_axi_awid,
output wire [AXI_ADDR_WIDTH-1:0] m_axi_awaddr,
output wire [7:0] m_axi_awlen,
output wire [2:0] m_axi_awsize,
output wire [1:0] m_axi_awburst,
output wire m_axi_awlock,
output wire [3:0] m_axi_awcache,
output wire [2:0] m_axi_awprot,
output wire m_axi_awvalid,
input wire m_axi_awready,
output wire [AXI_DATA_WIDTH-1:0] m_axi_wdata,
output wire [AXI_STRB_WIDTH-1:0] m_axi_wstrb,
output wire m_axi_wlast,
output wire m_axi_wvalid,
input wire m_axi_wready,
input wire [AXI_ID_WIDTH-1:0] m_axi_bid,
input wire [1:0] m_axi_bresp,
input wire m_axi_bvalid,
output wire m_axi_bready,
/*
* Configuration
*/
input wire enable,
input wire ext_tag_enable,
input wire [15:0] requester_id,
input wire requester_id_enable,
input wire [2:0] max_read_request_size,
/*
* Status
*/
output wire status_error_cor,
output wire status_error_uncor
);
parameter AXI_WORD_WIDTH = AXI_STRB_WIDTH;
parameter AXI_WORD_SIZE = AXI_DATA_WIDTH/AXI_WORD_WIDTH;
parameter AXI_BURST_SIZE = $clog2(AXI_STRB_WIDTH);
parameter AXI_MAX_BURST_SIZE = AXI_MAX_BURST_LEN*AXI_WORD_WIDTH;
parameter AXIS_PCIE_WORD_WIDTH = AXIS_PCIE_KEEP_WIDTH;
parameter AXIS_PCIE_WORD_SIZE = AXIS_PCIE_DATA_WIDTH/AXIS_PCIE_WORD_WIDTH;
parameter OFFSET_WIDTH = $clog2(AXIS_PCIE_DATA_WIDTH/8);
parameter CYCLE_COUNT_WIDTH = 13-AXI_BURST_SIZE;
parameter PCIE_TAG_WIDTH = $clog2(PCIE_TAG_COUNT);
parameter PCIE_TAG_COUNT_1 = 2**PCIE_TAG_WIDTH > 32 ? 32 : 2**PCIE_TAG_WIDTH;
parameter PCIE_TAG_WIDTH_1 = $clog2(PCIE_TAG_COUNT_1);
parameter PCIE_TAG_COUNT_2 = 2**PCIE_TAG_WIDTH > 32 ? 2**PCIE_TAG_WIDTH-32 : 0;
parameter PCIE_TAG_WIDTH_2 = $clog2(PCIE_TAG_COUNT_2);
parameter OP_TAG_WIDTH = $clog2(OP_TABLE_SIZE);
parameter OP_TABLE_READ_COUNT_WIDTH = PCIE_TAG_WIDTH+1;
parameter OP_TABLE_WRITE_COUNT_WIDTH = LEN_WIDTH;
parameter STATUS_FIFO_ADDR_WIDTH = 5;
parameter INIT_COUNT_WIDTH = PCIE_TAG_WIDTH > OP_TAG_WIDTH ? PCIE_TAG_WIDTH : OP_TAG_WIDTH;
// bus width assertions
initial begin
if (AXIS_PCIE_DATA_WIDTH != 64 && AXIS_PCIE_DATA_WIDTH != 128 && AXIS_PCIE_DATA_WIDTH != 256 && AXIS_PCIE_DATA_WIDTH != 512) begin
$error("Error: PCIe interface width must be 64, 128, 256, or 512 (instance %m)");
$finish;
end
if (AXIS_PCIE_KEEP_WIDTH * 32 != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: PCIe interface requires dword (32-bit) granularity (instance %m)");
$finish;
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
if (AXIS_PCIE_RC_USER_WIDTH != 161) begin
$error("Error: PCIe RC tuser width must be 161 (instance %m)");
$finish;
end
if (AXIS_PCIE_RQ_USER_WIDTH != 137) begin
$error("Error: PCIe RQ tuser width must be 137 (instance %m)");
$finish;
end
end else begin
if (AXIS_PCIE_RC_USER_WIDTH != 75) begin
$error("Error: PCIe RC tuser width must be 75 (instance %m)");
$finish;
end
if (AXIS_PCIE_RQ_USER_WIDTH != 60 && AXIS_PCIE_RQ_USER_WIDTH != 62) begin
$error("Error: PCIe RQ tuser width must be 60 or 62 (instance %m)");
$finish;
end
end
if (AXIS_PCIE_RQ_USER_WIDTH == 60) begin
if (RQ_SEQ_NUM_ENABLE && RQ_SEQ_NUM_WIDTH != 4) begin
$error("Error: RQ sequence number width must be 4 (instance %m)");
$finish;
end
if (PCIE_TAG_COUNT > 64) begin
$error("Error: PCIe tag count must be no larger than 64 (instance %m)");
$finish;
end
end else begin
if (RQ_SEQ_NUM_ENABLE && RQ_SEQ_NUM_WIDTH != 6) begin
$error("Error: RQ sequence number width must be 6 (instance %m)");
$finish;
end
if (PCIE_TAG_COUNT > 256) begin
$error("Error: PCIe tag count must be no larger than 256 (instance %m)");
$finish;
end
end
if (RQ_SEQ_NUM_ENABLE && TX_LIMIT > 2**(RQ_SEQ_NUM_WIDTH-1)) begin
$error("Error: TX limit out of range (instance %m)");
$finish;
end
if (AXI_DATA_WIDTH != AXIS_PCIE_DATA_WIDTH) begin
$error("Error: AXI interface width must match PCIe interface width (instance %m)");
$finish;
end
if (AXI_STRB_WIDTH * 8 != AXI_DATA_WIDTH) begin
$error("Error: AXI interface requires byte (8-bit) granularity (instance %m)");
$finish;
end
if (AXI_MAX_BURST_LEN < 1 || AXI_MAX_BURST_LEN > 256) begin
$error("Error: AXI_MAX_BURST_LEN must be between 1 and 256 (instance %m)");
$finish;
end
if (PCIE_TAG_COUNT < 1 || PCIE_TAG_COUNT > 256) begin
$error("Error: PCIe tag count must be between 1 and 256 (instance %m)");
$finish;
end
end
localparam [3:0]
REQ_MEM_READ = 4'b0000,
REQ_MEM_WRITE = 4'b0001,
REQ_IO_READ = 4'b0010,
REQ_IO_WRITE = 4'b0011,
REQ_MEM_FETCH_ADD = 4'b0100,
REQ_MEM_SWAP = 4'b0101,
REQ_MEM_CAS = 4'b0110,
REQ_MEM_READ_LOCKED = 4'b0111,
REQ_CFG_READ_0 = 4'b1000,
REQ_CFG_READ_1 = 4'b1001,
REQ_CFG_WRITE_0 = 4'b1010,
REQ_CFG_WRITE_1 = 4'b1011,
REQ_MSG = 4'b1100,
REQ_MSG_VENDOR = 4'b1101,
REQ_MSG_ATS = 4'b1110;
localparam [2:0]
CPL_STATUS_SC = 3'b000, // successful completion
CPL_STATUS_UR = 3'b001, // unsupported request
CPL_STATUS_CRS = 3'b010, // configuration request retry status
CPL_STATUS_CA = 3'b100; // completer abort
localparam [3:0]
RC_ERROR_NORMAL_TERMINATION = 4'b0000,
RC_ERROR_POISONED = 4'b0001,
RC_ERROR_BAD_STATUS = 4'b0010,
RC_ERROR_INVALID_LENGTH = 4'b0011,
RC_ERROR_MISMATCH = 4'b0100,
RC_ERROR_INVALID_ADDRESS = 4'b0101,
RC_ERROR_INVALID_TAG = 4'b0110,
RC_ERROR_TIMEOUT = 4'b1001,
RC_ERROR_FLR = 4'b1000;
localparam [1:0]
AXI_RESP_OKAY = 2'b00,
AXI_RESP_EXOKAY = 2'b01,
AXI_RESP_SLVERR = 2'b10,
AXI_RESP_DECERR = 2'b11;
localparam [3:0]
DMA_ERROR_NONE = 4'd0,
DMA_ERROR_TIMEOUT = 4'd1,
DMA_ERROR_PARITY = 4'd2,
DMA_ERROR_AXI_RD_SLVERR = 4'd4,
DMA_ERROR_AXI_RD_DECERR = 4'd5,
DMA_ERROR_AXI_WR_SLVERR = 4'd6,
DMA_ERROR_AXI_WR_DECERR = 4'd7,
DMA_ERROR_PCIE_FLR = 4'd8,
DMA_ERROR_PCIE_CPL_POISONED = 4'd9,
DMA_ERROR_PCIE_CPL_STATUS_UR = 4'd10,
DMA_ERROR_PCIE_CPL_STATUS_CA = 4'd11;
localparam [1:0]
REQ_STATE_IDLE = 2'd0,
REQ_STATE_START = 2'd1,
REQ_STATE_HEADER = 2'd2;
reg [1:0] req_state_reg = REQ_STATE_IDLE, req_state_next;
localparam [2:0]
TLP_STATE_IDLE = 3'd0,
TLP_STATE_HEADER = 3'd1,
TLP_STATE_START = 3'd2,
TLP_STATE_TRANSFER = 3'd3,
TLP_STATE_WAIT_END = 3'd4;
reg [2:0] tlp_state_reg = TLP_STATE_IDLE, tlp_state_next;
// datapath control signals
reg transfer_in_save;
reg [3:0] first_be;
reg [3:0] last_be;
reg [10:0] dword_count;
reg req_last_tlp;
reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr;
reg [INIT_COUNT_WIDTH-1:0] init_count_reg = 0;
reg init_done_reg = 1'b0;
reg init_pcie_tag_reg = 1'b1;
reg init_op_tag_reg = 1'b1;
reg [PCIE_ADDR_WIDTH-1:0] req_pcie_addr_reg = {PCIE_ADDR_WIDTH{1'b0}}, req_pcie_addr_next;
reg [AXI_ADDR_WIDTH-1:0] req_axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, req_axi_addr_next;
reg [LEN_WIDTH-1:0] req_op_count_reg = {LEN_WIDTH{1'b0}}, req_op_count_next;
reg [12:0] req_tlp_count_reg = 13'd0, req_tlp_count_next;
reg req_zero_len_reg = 1'b0, req_zero_len_next;
reg [OP_TAG_WIDTH-1:0] req_op_tag_reg = {OP_TAG_WIDTH{1'b0}}, req_op_tag_next;
reg req_op_tag_valid_reg = 1'b0, req_op_tag_valid_next;
reg [PCIE_TAG_WIDTH-1:0] req_pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, req_pcie_tag_next;
reg req_pcie_tag_valid_reg = 1'b0, req_pcie_tag_valid_next;
reg [11:0] lower_addr_reg = 12'd0, lower_addr_next;
reg [12:0] byte_count_reg = 13'd0, byte_count_next;
reg [3:0] error_code_reg = 4'd0, error_code_next;
reg [AXI_ADDR_WIDTH-1:0] axi_addr_reg = {AXI_ADDR_WIDTH{1'b0}}, axi_addr_next;
reg [10:0] op_dword_count_reg = 11'd0, op_dword_count_next;
reg [2:0] cpl_status_reg = 3'b000, cpl_status_next;
reg [12:0] op_count_reg = 13'd0, op_count_next;
reg [12:0] tr_count_reg = 13'd0, tr_count_next;
reg zero_len_reg = 1'b0, zero_len_next;
reg [CYCLE_COUNT_WIDTH-1:0] input_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, input_cycle_count_next;
reg [CYCLE_COUNT_WIDTH-1:0] output_cycle_count_reg = {CYCLE_COUNT_WIDTH{1'b0}}, output_cycle_count_next;
reg input_active_reg = 1'b0, input_active_next;
reg bubble_cycle_reg = 1'b0, bubble_cycle_next;
reg first_cycle_reg = 1'b0, first_cycle_next;
reg last_cycle_reg = 1'b0, last_cycle_next;
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_reg = {PCIE_TAG_WIDTH{1'b0}}, pcie_tag_next;
reg [OP_TAG_WIDTH-1:0] op_tag_reg = {OP_TAG_WIDTH{1'b0}}, op_tag_next;
reg final_cpl_reg = 1'b0, final_cpl_next;
reg finish_tag_reg = 1'b0, finish_tag_next;
reg [OFFSET_WIDTH-1:0] offset_reg = {OFFSET_WIDTH{1'b0}}, offset_next;
reg [OFFSET_WIDTH-1:0] first_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, first_cycle_offset_next;
reg [OFFSET_WIDTH-1:0] last_cycle_offset_reg = {OFFSET_WIDTH{1'b0}}, last_cycle_offset_next;
reg [127:0] tlp_header_data;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] tlp_tuser;
reg [10:0] max_read_request_size_dw_reg = 11'd0;
reg have_credit_reg = 1'b0;
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_wr_ptr_reg = 0;
reg [STATUS_FIFO_ADDR_WIDTH+1-1:0] status_fifo_rd_ptr_reg = 0, status_fifo_rd_ptr_next;
reg [OP_TAG_WIDTH-1:0] status_fifo_op_tag[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg status_fifo_skip[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg status_fifo_finish[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg [3:0] status_fifo_error[(2**STATUS_FIFO_ADDR_WIDTH)-1:0];
reg [OP_TAG_WIDTH-1:0] status_fifo_wr_op_tag;
reg status_fifo_wr_skip;
reg status_fifo_wr_finish;
reg [3:0] status_fifo_wr_error;
reg status_fifo_we;
reg status_fifo_skip_reg = 1'b0, status_fifo_skip_next;
reg status_fifo_finish_reg = 1'b0, status_fifo_finish_next;
reg [3:0] status_fifo_error_reg = 4'd0, status_fifo_error_next;
reg status_fifo_we_reg = 1'b0, status_fifo_we_next;
reg status_fifo_half_full_reg = 1'b0;
reg [OP_TAG_WIDTH-1:0] status_fifo_rd_op_tag_reg = 0, status_fifo_rd_op_tag_next;
reg status_fifo_rd_skip_reg = 1'b0, status_fifo_rd_skip_next;
reg status_fifo_rd_finish_reg = 1'b0, status_fifo_rd_finish_next;
reg [3:0] status_fifo_rd_error_reg = 4'd0, status_fifo_rd_error_next;
reg status_fifo_rd_valid_reg = 1'b0, status_fifo_rd_valid_next;
reg [RQ_SEQ_NUM_WIDTH-1:0] active_tx_count_reg = {RQ_SEQ_NUM_WIDTH{1'b0}};
reg active_tx_count_av_reg = 1'b1;
reg inc_active_tx;
reg s_axis_rc_tready_reg = 1'b0, s_axis_rc_tready_next;
reg s_axis_read_desc_ready_reg = 1'b0, s_axis_read_desc_ready_next;
reg [TAG_WIDTH-1:0] m_axis_read_desc_status_tag_reg = {TAG_WIDTH{1'b0}}, m_axis_read_desc_status_tag_next;
reg [3:0] m_axis_read_desc_status_error_reg = 4'd0, m_axis_read_desc_status_error_next;
reg m_axis_read_desc_status_valid_reg = 1'b0, m_axis_read_desc_status_valid_next;
reg [AXI_ADDR_WIDTH-1:0] m_axi_awaddr_reg = {AXI_ADDR_WIDTH{1'b0}}, m_axi_awaddr_next;
reg [7:0] m_axi_awlen_reg = 8'd0, m_axi_awlen_next;
reg m_axi_awvalid_reg = 1'b0, m_axi_awvalid_next;
reg m_axi_bready_reg = 1'b0, m_axi_bready_next;
reg status_error_cor_reg = 1'b0, status_error_cor_next;
reg status_error_uncor_reg = 1'b0, status_error_uncor_next;
reg [AXIS_PCIE_DATA_WIDTH-1:0] save_axis_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
wire [AXI_DATA_WIDTH-1:0] shift_axis_tdata = {s_axis_rc_tdata, save_axis_tdata_reg} >> ((AXI_STRB_WIDTH-offset_reg)*AXI_WORD_SIZE);
// internal datapath
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_int;
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_int;
reg m_axis_rq_tvalid_int;
reg m_axis_rq_tready_int_reg = 1'b0;
reg m_axis_rq_tlast_int;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_int;
wire m_axis_rq_tready_int_early;
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_int;
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_int;
reg m_axi_wvalid_int;
reg m_axi_wready_int_reg = 1'b0;
reg m_axi_wlast_int;
wire m_axi_wready_int_early;
assign s_axis_rc_tready = s_axis_rc_tready_reg;
assign s_axis_read_desc_ready = s_axis_read_desc_ready_reg;
assign m_axis_read_desc_status_tag = m_axis_read_desc_status_tag_reg;
assign m_axis_read_desc_status_error = m_axis_read_desc_status_error_reg;
assign m_axis_read_desc_status_valid = m_axis_read_desc_status_valid_reg;
assign m_axi_awid = {AXI_ID_WIDTH{1'b0}};
assign m_axi_awaddr = m_axi_awaddr_reg;
assign m_axi_awlen = m_axi_awlen_reg;
assign m_axi_awsize = $clog2(AXI_STRB_WIDTH);
assign m_axi_awburst = 2'b01;
assign m_axi_awlock = 1'b0;
assign m_axi_awcache = 4'b0011;
assign m_axi_awprot = 3'b010;
assign m_axi_awvalid = m_axi_awvalid_reg;
assign m_axi_bready = m_axi_bready_reg;
assign status_error_cor = status_error_cor_reg;
assign status_error_uncor = status_error_uncor_reg;
// PCIe tag management
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_table_start_ptr_reg = 0, pcie_tag_table_start_ptr_next;
reg [AXI_ADDR_WIDTH-1:0] pcie_tag_table_start_axi_addr_reg = 0, pcie_tag_table_start_axi_addr_next;
reg [OP_TAG_WIDTH-1:0] pcie_tag_table_start_op_tag_reg = 0, pcie_tag_table_start_op_tag_next;
reg pcie_tag_table_start_zero_len_reg = 1'b0, pcie_tag_table_start_zero_len_next;
reg pcie_tag_table_start_en_reg = 1'b0, pcie_tag_table_start_en_next;
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_table_finish_ptr;
reg pcie_tag_table_finish_en;
reg [AXI_ADDR_WIDTH-1:0] pcie_tag_table_axi_addr[(2**PCIE_TAG_WIDTH)-1:0];
reg [OP_TAG_WIDTH-1:0] pcie_tag_table_op_tag[(2**PCIE_TAG_WIDTH)-1:0];
reg pcie_tag_table_zero_len[(2**PCIE_TAG_WIDTH)-1:0];
reg pcie_tag_table_active_a[(2**PCIE_TAG_WIDTH)-1:0];
reg pcie_tag_table_active_b[(2**PCIE_TAG_WIDTH)-1:0];
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_fifo_wr_tag;
reg [PCIE_TAG_WIDTH_1+1-1:0] pcie_tag_fifo_1_wr_ptr_reg = 0;
reg [PCIE_TAG_WIDTH_1+1-1:0] pcie_tag_fifo_1_rd_ptr_reg = 0, pcie_tag_fifo_1_rd_ptr_next;
reg [PCIE_TAG_WIDTH_1-1:0] pcie_tag_fifo_1_mem [2**PCIE_TAG_WIDTH_1-1:0];
reg pcie_tag_fifo_1_we;
reg [PCIE_TAG_WIDTH_2+1-1:0] pcie_tag_fifo_2_wr_ptr_reg = 0;
reg [PCIE_TAG_WIDTH_2+1-1:0] pcie_tag_fifo_2_rd_ptr_reg = 0, pcie_tag_fifo_2_rd_ptr_next;
reg [PCIE_TAG_WIDTH-1:0] pcie_tag_fifo_2_mem [2**PCIE_TAG_WIDTH_2-1:0];
reg pcie_tag_fifo_2_we;
// operation tag management
reg [OP_TAG_WIDTH-1:0] op_table_start_ptr;
reg [TAG_WIDTH-1:0] op_table_start_tag;
reg op_table_start_en;
reg [OP_TAG_WIDTH-1:0] op_table_read_start_ptr;
reg op_table_read_start_commit;
reg op_table_read_start_en;
reg [OP_TAG_WIDTH-1:0] op_table_update_status_ptr;
reg [3:0] op_table_update_status_error;
reg op_table_update_status_en;
reg [OP_TAG_WIDTH-1:0] op_table_read_finish_ptr;
reg op_table_read_finish_en;
reg [TAG_WIDTH-1:0] op_table_tag [2**OP_TAG_WIDTH-1:0];
reg op_table_read_init_a [2**OP_TAG_WIDTH-1:0];
reg op_table_read_init_b [2**OP_TAG_WIDTH-1:0];
reg op_table_read_commit [2**OP_TAG_WIDTH-1:0];
reg op_table_read_error [2**OP_TAG_WIDTH-1:0];
reg [OP_TABLE_READ_COUNT_WIDTH-1:0] op_table_read_count_start [2**OP_TAG_WIDTH-1:0];
reg [OP_TABLE_READ_COUNT_WIDTH-1:0] op_table_read_count_finish [2**OP_TAG_WIDTH-1:0];
reg op_table_error_a [2**OP_TAG_WIDTH-1:0];
reg op_table_error_b [2**OP_TAG_WIDTH-1:0];
reg [3:0] op_table_error_code [2**OP_TAG_WIDTH-1:0];
reg [OP_TAG_WIDTH+1-1:0] op_tag_fifo_wr_ptr_reg = 0;
reg [OP_TAG_WIDTH+1-1:0] op_tag_fifo_rd_ptr_reg = 0, op_tag_fifo_rd_ptr_next;
reg [OP_TAG_WIDTH-1:0] op_tag_fifo_mem [2**OP_TAG_WIDTH-1:0];
reg [OP_TAG_WIDTH-1:0] op_tag_fifo_wr_tag;
reg op_tag_fifo_we;
integer i;
initial begin
for (i = 0; i < 2**OP_TAG_WIDTH; i = i + 1) begin
op_table_tag[i] = 0;
op_table_read_init_a[i] = 0;
op_table_read_init_b[i] = 0;
op_table_read_commit[i] = 0;
op_table_read_count_start[i] = 0;
op_table_read_count_finish[i] = 0;
op_table_error_a[i] = 0;
op_table_error_b[i] = 0;
op_table_error_code[i] = 0;
end
for (i = 0; i < 2**PCIE_TAG_WIDTH; i = i + 1) begin
pcie_tag_table_axi_addr[i] = 0;
pcie_tag_table_op_tag[i] = 0;
pcie_tag_table_zero_len[i] = 0;
pcie_tag_table_active_a[i] = 0;
pcie_tag_table_active_b[i] = 0;
end
end
always @* begin
req_state_next = REQ_STATE_IDLE;
s_axis_read_desc_ready_next = 1'b0;
req_pcie_addr_next = req_pcie_addr_reg;
req_axi_addr_next = req_axi_addr_reg;
req_op_count_next = req_op_count_reg;
req_tlp_count_next = req_tlp_count_reg;
req_zero_len_next = req_zero_len_reg;
req_op_tag_next = req_op_tag_reg;
req_op_tag_valid_next = req_op_tag_valid_reg;
req_pcie_tag_next = req_pcie_tag_reg;
req_pcie_tag_valid_next = req_pcie_tag_valid_reg;
inc_active_tx = 1'b0;
op_table_start_ptr = req_op_tag_reg;
op_table_start_tag = s_axis_read_desc_tag;
op_table_start_en = 1'b0;
op_table_read_start_ptr = req_op_tag_reg;
op_table_read_start_commit = 1'b0;
op_table_read_start_en = 1'b0;
// TLP size computation
if (req_op_count_reg + req_pcie_addr_reg[1:0] <= {max_read_request_size_dw_reg, 2'b00}) begin
// packet smaller than max read request size
if (((req_pcie_addr_reg & 12'hfff) + (req_op_count_reg & 12'hfff)) >> 12 != 0 || req_op_count_reg >> 12 != 0) begin
// crosses 4k boundary, split on 4K boundary
req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0];
dword_count = 11'h400 - req_pcie_addr_reg[11:2];
req_last_tlp = (((req_pcie_addr_reg & 12'hfff) + (req_op_count_reg & 12'hfff)) & 12'hfff) == 0 && req_op_count_reg >> 12 == 0;
// optimized req_pcie_addr = req_pcie_addr_reg + req_tlp_count_next
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]+1;
req_pcie_addr[11:0] = 12'd0;
end else begin
// does not cross 4k boundary, send one TLP
req_tlp_count_next = req_op_count_reg;
dword_count = (req_op_count_reg + req_pcie_addr_reg[1:0] + 3) >> 2;
req_last_tlp = 1'b1;
// always last TLP, so next address is irrelevant
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12];
req_pcie_addr[11:0] = 12'd0;
end
end else begin
// packet larger than max read request size
if (((req_pcie_addr_reg & 12'hfff) + {max_read_request_size_dw_reg, 2'b00}) >> 12 != 0) begin
// crosses 4k boundary, split on 4K boundary
req_tlp_count_next = 13'h1000 - req_pcie_addr_reg[11:0];
dword_count = 11'h400 - req_pcie_addr_reg[11:2];
req_last_tlp = 1'b0;
// optimized req_pcie_addr = req_pcie_addr_reg + req_tlp_count_next
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12]+1;
req_pcie_addr[11:0] = 12'd0;
end else begin
// does not cross 4k boundary, split on 128-byte read completion boundary
req_tlp_count_next = {max_read_request_size_dw_reg, 2'b00} - req_pcie_addr_reg[6:0];
dword_count = max_read_request_size_dw_reg - req_pcie_addr_reg[6:2];
req_last_tlp = 1'b0;
// optimized req_pcie_addr = req_pcie_addr_reg + req_tlp_count_next
req_pcie_addr[PCIE_ADDR_WIDTH-1:12] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:12];
req_pcie_addr[11:0] = {{req_pcie_addr_reg[11:7], 5'd0} + max_read_request_size_dw_reg, 2'b00};
end
end
pcie_tag_table_start_ptr_next = req_pcie_tag_reg;
pcie_tag_table_start_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
pcie_tag_table_start_op_tag_next = req_op_tag_reg;
pcie_tag_table_start_zero_len_next = req_zero_len_reg;
pcie_tag_table_start_en_next = 1'b0;
first_be = 4'b1111 << req_pcie_addr_reg[1:0];
last_be = 4'b1111 >> (3 - ((req_pcie_addr_reg[1:0] + req_tlp_count_next[1:0] - 1) & 3));
// TLP header and sideband data
tlp_header_data[1:0] = 2'b0; // address type
tlp_header_data[63:2] = req_pcie_addr_reg[PCIE_ADDR_WIDTH-1:2]; // address
tlp_header_data[74:64] = dword_count; // DWORD count
tlp_header_data[78:75] = REQ_MEM_READ; // request type - memory read
tlp_header_data[79] = 1'b0; // poisoned request
tlp_header_data[95:80] = requester_id;
tlp_header_data[103:96] = req_pcie_tag_reg;
tlp_header_data[119:104] = 16'd0; // completer ID
tlp_header_data[120] = requester_id_enable;
tlp_header_data[123:121] = 3'b000; // traffic class
tlp_header_data[126:124] = 3'b000; // attr
tlp_header_data[127] = 1'b0; // force ECRC
if (AXIS_PCIE_DATA_WIDTH == 512) begin
tlp_tuser[3:0] = req_zero_len_reg ? 4'b0000 : (dword_count == 1 ? first_be & last_be : first_be); // first BE 0
tlp_tuser[7:4] = 4'd0; // first BE 1
tlp_tuser[11:8] = req_zero_len_reg ? 4'b0000 : (dword_count == 1 ? 4'b0000 : last_be); // last BE 0
tlp_tuser[15:12] = 4'd0; // last BE 1
tlp_tuser[19:16] = 3'd0; // addr_offset
tlp_tuser[21:20] = 2'b01; // is_sop
tlp_tuser[23:22] = 2'd0; // is_sop0_ptr
tlp_tuser[25:24] = 2'd0; // is_sop1_ptr
tlp_tuser[27:26] = 2'b01; // is_eop
tlp_tuser[31:28] = 4'd3; // is_eop0_ptr
tlp_tuser[35:32] = 4'd0; // is_eop1_ptr
tlp_tuser[36] = 1'b0; // discontinue
tlp_tuser[38:37] = 2'b00; // tph_present
tlp_tuser[42:39] = 4'b0000; // tph_type
tlp_tuser[44:43] = 2'b00; // tph_indirect_tag_en
tlp_tuser[60:45] = 16'd0; // tph_st_tag
tlp_tuser[66:61] = 6'd0; // seq_num0
tlp_tuser[72:67] = 6'd0; // seq_num1
tlp_tuser[136:73] = 64'd0; // parity
end else begin
tlp_tuser[3:0] = req_zero_len_reg ? 4'b0000 : (dword_count == 1 ? first_be & last_be : first_be); // first BE
tlp_tuser[7:4] = req_zero_len_reg ? 4'b0000 : (dword_count == 1 ? 4'b0000 : last_be); // last BE
tlp_tuser[10:8] = 3'd0; // addr_offset
tlp_tuser[11] = 1'b0; // discontinue
tlp_tuser[12] = 1'b0; // tph_present
tlp_tuser[14:13] = 2'b00; // tph_type
tlp_tuser[15] = 1'b0; // tph_indirect_tag_en
tlp_tuser[23:16] = 8'd0; // tph_st_tag
tlp_tuser[27:24] = 4'd0; // seq_num
tlp_tuser[59:28] = 32'd0; // parity
if (AXIS_PCIE_RQ_USER_WIDTH == 62) begin
tlp_tuser[61:60] = 2'd0; // seq_num
end
end
if (AXIS_PCIE_DATA_WIDTH == 512) begin
m_axis_rq_tdata_int = tlp_header_data;
m_axis_rq_tkeep_int = 16'b0000000000001111;
m_axis_rq_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 256) begin
m_axis_rq_tdata_int = tlp_header_data;
m_axis_rq_tkeep_int = 8'b00001111;
m_axis_rq_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 128) begin
m_axis_rq_tdata_int = tlp_header_data;
m_axis_rq_tkeep_int = 4'b1111;
m_axis_rq_tlast_int = 1'b1;
end else if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_rq_tdata_int = tlp_header_data[63:0];
m_axis_rq_tkeep_int = 2'b11;
m_axis_rq_tlast_int = 1'b0;
end
m_axis_rq_tvalid_int = 1'b0;
m_axis_rq_tuser_int = tlp_tuser;
// TLP segmentation and request generation
case (req_state_reg)
REQ_STATE_IDLE: begin
s_axis_read_desc_ready_next = init_done_reg && enable && req_op_tag_valid_reg;
if (s_axis_read_desc_ready && s_axis_read_desc_valid) begin
s_axis_read_desc_ready_next = 1'b0;
req_pcie_addr_next = s_axis_read_desc_pcie_addr;
req_axi_addr_next = s_axis_read_desc_axi_addr;
if (s_axis_read_desc_len == 0) begin
// zero-length operation
req_op_count_next = 1;
req_zero_len_next = 1'b1;
end else begin
req_op_count_next = s_axis_read_desc_len;
req_zero_len_next = 1'b0;
end
op_table_start_ptr = req_op_tag_reg;
op_table_start_tag = s_axis_read_desc_tag;
op_table_start_en = 1'b1;
req_state_next = REQ_STATE_START;
end else begin
req_state_next = REQ_STATE_IDLE;
end
end
REQ_STATE_START: begin
if (m_axis_rq_tready_int_reg && req_pcie_tag_valid_reg && (!TX_FC_ENABLE || have_credit_reg) && (!RQ_SEQ_NUM_ENABLE || active_tx_count_av_reg)) begin
m_axis_rq_tvalid_int = 1'b1;
inc_active_tx = 1'b1;
if (AXIS_PCIE_DATA_WIDTH > 64) begin
req_pcie_addr_next = req_pcie_addr;
req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
req_op_count_next = req_op_count_reg - req_tlp_count_next;
pcie_tag_table_start_ptr_next = req_pcie_tag_reg;
pcie_tag_table_start_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
pcie_tag_table_start_op_tag_next = req_op_tag_reg;
pcie_tag_table_start_zero_len_next = req_zero_len_reg;
pcie_tag_table_start_en_next = 1'b1;
op_table_read_start_ptr = req_op_tag_reg;
op_table_read_start_commit = req_last_tlp;
op_table_read_start_en = 1'b1;
req_pcie_tag_valid_next = 1'b0;
if (!req_last_tlp) begin
req_state_next = REQ_STATE_START;
end else begin
req_op_tag_valid_next = 1'b0;
s_axis_read_desc_ready_next = init_done_reg && enable && (op_tag_fifo_rd_ptr_reg != op_tag_fifo_wr_ptr_reg);
req_state_next = REQ_STATE_IDLE;
end
end else begin
req_state_next = REQ_STATE_HEADER;
end
end else begin
req_state_next = REQ_STATE_START;
end
end
REQ_STATE_HEADER: begin
if (AXIS_PCIE_DATA_WIDTH == 64) begin
m_axis_rq_tdata_int = tlp_header_data[127:64];
m_axis_rq_tkeep_int = 2'b11;
m_axis_rq_tlast_int = 1'b1;
if (m_axis_rq_tready_int_reg && req_pcie_tag_valid_reg) begin
req_pcie_addr_next = req_pcie_addr;
req_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
req_op_count_next = req_op_count_reg - req_tlp_count_next;
m_axis_rq_tvalid_int = 1'b1;
pcie_tag_table_start_ptr_next = req_pcie_tag_reg;
pcie_tag_table_start_axi_addr_next = req_axi_addr_reg + req_tlp_count_next;
pcie_tag_table_start_op_tag_next = req_op_tag_reg;
pcie_tag_table_start_zero_len_next = req_zero_len_reg;
pcie_tag_table_start_en_next = 1'b1;
op_table_read_start_ptr = req_op_tag_reg;
op_table_read_start_commit = req_last_tlp;
op_table_read_start_en = 1'b1;
req_pcie_tag_valid_next = 1'b0;
if (!req_last_tlp) begin
req_state_next = REQ_STATE_START;
end else begin
req_op_tag_valid_next = 1'b0;
s_axis_read_desc_ready_next = init_done_reg && enable && (op_tag_fifo_rd_ptr_reg != op_tag_fifo_wr_ptr_reg);
req_state_next = REQ_STATE_IDLE;
end
end else begin
req_state_next = REQ_STATE_HEADER;
end
end
end
endcase
op_tag_fifo_rd_ptr_next = op_tag_fifo_rd_ptr_reg;
if (!req_op_tag_valid_next) begin
if (op_tag_fifo_rd_ptr_reg != op_tag_fifo_wr_ptr_reg) begin
req_op_tag_next = op_tag_fifo_mem[op_tag_fifo_rd_ptr_reg[OP_TAG_WIDTH-1:0]];
req_op_tag_valid_next = 1'b1;
op_tag_fifo_rd_ptr_next = op_tag_fifo_rd_ptr_reg + 1;
end
end
pcie_tag_fifo_1_rd_ptr_next = pcie_tag_fifo_1_rd_ptr_reg;
pcie_tag_fifo_2_rd_ptr_next = pcie_tag_fifo_2_rd_ptr_reg;
if (!req_pcie_tag_valid_next) begin
if (pcie_tag_fifo_1_rd_ptr_reg != pcie_tag_fifo_1_wr_ptr_reg) begin
req_pcie_tag_next = pcie_tag_fifo_1_mem[pcie_tag_fifo_1_rd_ptr_reg[PCIE_TAG_WIDTH_1-1:0]];
req_pcie_tag_valid_next = 1'b1;
pcie_tag_fifo_1_rd_ptr_next = pcie_tag_fifo_1_rd_ptr_reg + 1;
end else if (PCIE_TAG_COUNT_2 > 0 && ext_tag_enable && pcie_tag_fifo_2_rd_ptr_reg != pcie_tag_fifo_2_wr_ptr_reg) begin
req_pcie_tag_next = pcie_tag_fifo_2_mem[pcie_tag_fifo_2_rd_ptr_reg[PCIE_TAG_WIDTH_2-1:0]];
req_pcie_tag_valid_next = 1'b1;
pcie_tag_fifo_2_rd_ptr_next = pcie_tag_fifo_2_rd_ptr_reg + 1;
end
end
end
always @* begin
tlp_state_next = TLP_STATE_IDLE;
transfer_in_save = 1'b0;
s_axis_rc_tready_next = 1'b0;
lower_addr_next = lower_addr_reg;
byte_count_next = byte_count_reg;
error_code_next = error_code_reg;
axi_addr_next = axi_addr_reg;
op_count_next = op_count_reg;
tr_count_next = tr_count_reg;
zero_len_next = zero_len_reg;
op_dword_count_next = op_dword_count_reg;
cpl_status_next = cpl_status_reg;
input_cycle_count_next = input_cycle_count_reg;
output_cycle_count_next = output_cycle_count_reg;
input_active_next = input_active_reg;
bubble_cycle_next = bubble_cycle_reg;
first_cycle_next = first_cycle_reg;
last_cycle_next = last_cycle_reg;
pcie_tag_next = pcie_tag_reg;
op_tag_next = op_tag_reg;
final_cpl_next = final_cpl_reg;
finish_tag_next = 1'b0;
offset_next = offset_reg;
first_cycle_offset_next = first_cycle_offset_reg;
last_cycle_offset_next = last_cycle_offset_reg;
m_axi_awaddr_next = m_axi_awaddr_reg;
m_axi_awlen_next = m_axi_awlen_reg;
m_axi_awvalid_next = m_axi_awvalid_reg && !m_axi_awready;
m_axi_bready_next = 1'b0;
m_axi_wdata_int = shift_axis_tdata;
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
m_axi_wvalid_int = 1'b0;
m_axi_wlast_int = 1'b0;
status_fifo_skip_next = 1'b0;
status_fifo_finish_next = 1'b0;
status_fifo_error_next = DMA_ERROR_NONE;
status_fifo_we_next = 1'b0;
status_error_cor_next = 1'b0;
status_error_uncor_next = 1'b0;
// TLP response handling and AXI operation generation
case (tlp_state_reg)
TLP_STATE_IDLE: begin
// idle state, wait for completion
if (AXIS_PCIE_DATA_WIDTH > 64) begin
s_axis_rc_tready_next = 1'b0;
if (init_done_reg && s_axis_rc_tvalid && !status_fifo_half_full_reg) begin
// header fields
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
error_code_next = s_axis_rc_tdata[15:12]; // error code
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
//s_axis_rc_tdata[29]; // locked read
//s_axis_rc_tdata[30]; // request completed
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
cpl_status_next = s_axis_rc_tdata[45:43]; // completion status
//s_axis_rc_tdata[46]; // poisoned completion
//s_axis_rc_tdata[63:48]; // requester ID
pcie_tag_next = s_axis_rc_tdata[71:64]; // tag
//s_axis_rc_tdata[87:72]; // completer ID
//s_axis_rc_tdata[91:89]; // tc
//s_axis_rc_tdata[94:92]; // attr
// tuser fields
//s_axis_rc_tuser[31:0]; // byte enables
//s_axis_rc_tuser[32]; // is_sof_0
//s_axis_rc_tuser[33]; // is_sof_1
//s_axis_rc_tuser[37:34]; // is_eof_0
//s_axis_rc_tuser[41:38]; // is_eof_1
//s_axis_rc_tuser[42]; // discontinue
//s_axis_rc_tuser[74:43]; // parity
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
// more completions to follow
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
final_cpl_next = 1'b0;
end else begin
// last completion
op_count_next = byte_count_next;
final_cpl_next = 1'b1;
end
axi_addr_next = pcie_tag_table_axi_addr[pcie_tag_next] - byte_count_next;
zero_len_next = pcie_tag_table_zero_len[pcie_tag_next];
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (12+lower_addr_next[1:0]);
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 12+lower_addr_next[1:0];
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
first_cycle_next = 1'b1;
// AXI transfer size computation
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
// packet smaller than max burst size
if ((axi_addr_next ^ (axi_addr_next + op_count_next)) & (1 << 12)) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = op_count_next;
end
end else begin
// packet larger than max burst size
if ((axi_addr_next ^ (axi_addr_next + AXI_MAX_BURST_SIZE)) & (1 << 12)) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
end
end
op_tag_next = pcie_tag_table_op_tag[pcie_tag_next];
if (pcie_tag_table_active_b[pcie_tag_next] == pcie_tag_table_active_a[pcie_tag_next]) begin
// tag not active, handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else if (error_code_next == RC_ERROR_MISMATCH) begin
// format/status mismatch, handle as malformed TLP (2.3.2)
// ATTR or TC mismatch, handle as malformed TLP (2.3.2)
// drop TLP and report uncorrectable error
status_error_uncor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else if (error_code_next == RC_ERROR_POISONED || error_code_next == RC_ERROR_BAD_STATUS ||
error_code_next == RC_ERROR_TIMEOUT || error_code_next == RC_ERROR_FLR) begin
// transfer-terminating error
if (error_code_next == RC_ERROR_POISONED) begin
// poisoned TLP, handle as advisory non-fatal (6.2.3.2.4.3)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
status_fifo_error_next = DMA_ERROR_PCIE_CPL_POISONED;
end else if (error_code_next == RC_ERROR_BAD_STATUS) begin
// bad status, handle as advisory non-fatal (6.2.3.2.4.1)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
if (cpl_status_next == CPL_STATUS_CA) begin
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_CA;
end else begin
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_UR;
end
end else if (error_code_next == RC_ERROR_TIMEOUT) begin
// timeout, handle as uncorrectable (6.2.3.2.4.4)
// drop TLP and report uncorrectable error
status_error_uncor_next = 1'b1;
status_fifo_error_next = DMA_ERROR_TIMEOUT;
end else if (error_code_next == RC_ERROR_FLR) begin
// FLR; not an actual completion so no error to report
// drop TLP
status_fifo_error_next = DMA_ERROR_PCIE_FLR;
end
finish_tag_next = 1'b1;
status_fifo_skip_next = 1'b1;
status_fifo_finish_next = 1'b1;
status_fifo_we_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else begin
// no error
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
tlp_state_next = TLP_STATE_START;
end
end else begin
s_axis_rc_tready_next = 1'b0;
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
s_axis_rc_tready_next = init_done_reg && !status_fifo_half_full_reg;
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
// header fields
lower_addr_next = s_axis_rc_tdata[11:0]; // lower address
error_code_next = s_axis_rc_tdata[15:12]; // error code
byte_count_next = s_axis_rc_tdata[28:16]; // byte count
//s_axis_rc_tdata[29]; // locked read
//s_axis_rc_tdata[30]; // request completed
op_dword_count_next = s_axis_rc_tdata[42:32]; // DWORD count
cpl_status_next = s_axis_rc_tdata[45:43]; // completion status
//s_axis_rc_tdata[46]; // poisoned completion
//s_axis_rc_tdata[63:48]; // requester ID
// tuser fields
//s_axis_rc_tuser[31:0]; // byte enables
//s_axis_rc_tuser[32]; // is_sof_0
//s_axis_rc_tuser[33]; // is_sof_1
//s_axis_rc_tuser[37:34]; // is_eof_0
//s_axis_rc_tuser[41:38]; // is_eof_1
//s_axis_rc_tuser[42]; // discontinue
//s_axis_rc_tuser[74:43]; // parity
if (byte_count_next > (op_dword_count_next << 2) - lower_addr_next[1:0]) begin
// more completions to follow
op_count_next = (op_dword_count_next << 2) - lower_addr_next[1:0];
final_cpl_next = 1'b0;
end else begin
// last completion
op_count_next = byte_count_next;
final_cpl_next = 1'b1;
end
if (s_axis_rc_tlast) begin
s_axis_rc_tready_next = init_done_reg && !status_fifo_half_full_reg;
tlp_state_next = TLP_STATE_IDLE;
end else begin
s_axis_rc_tready_next = 1'b0;
tlp_state_next = TLP_STATE_HEADER;
end
end else begin
s_axis_rc_tready_next = init_done_reg && !status_fifo_half_full_reg;
tlp_state_next = TLP_STATE_IDLE;
end
end
end
TLP_STATE_HEADER: begin
// header state; process header (64 bit interface only)
s_axis_rc_tready_next = 1'b0;
if (s_axis_rc_tvalid) begin
pcie_tag_next = s_axis_rc_tdata[7:0]; // tag
//s_axis_rc_tdata[23:8]; // completer ID
//s_axis_rc_tdata[27:25]; // tc
//s_axis_rc_tdata[30:28]; // attr
axi_addr_next = pcie_tag_table_axi_addr[pcie_tag_next] - byte_count_reg;
zero_len_next = pcie_tag_table_zero_len[pcie_tag_next];
offset_next = axi_addr_next[OFFSET_WIDTH-1:0] - (4+lower_addr_reg[1:0]);
bubble_cycle_next = axi_addr_next[OFFSET_WIDTH-1:0] < 4+lower_addr_reg[1:0];
first_cycle_offset_next = axi_addr_next[OFFSET_WIDTH-1:0];
first_cycle_next = 1'b1;
// AXI transfer size computation
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
// packet smaller than max burst size
if ((axi_addr_next ^ (axi_addr_next + op_count_next)) & (1 << 12)) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = op_count_next;
end
end else begin
// packet larger than max burst size
if ((axi_addr_next ^ (axi_addr_next + AXI_MAX_BURST_SIZE)) & (1 << 12)) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
end
end
op_tag_next = pcie_tag_table_op_tag[pcie_tag_next];
if (pcie_tag_table_active_b[pcie_tag_next] == pcie_tag_table_active_a[pcie_tag_next]) begin
// tag not active, handle as unexpected completion (2.3.2), advisory non-fatal (6.2.3.2.4.5)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else if (error_code_next == RC_ERROR_MISMATCH) begin
// format/status mismatch, handle as malformed TLP (2.3.2)
// ATTR or TC mismatch, handle as malformed TLP (2.3.2)
// drop TLP and report uncorrectable error
status_error_uncor_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else if (error_code_next == RC_ERROR_POISONED || error_code_next == RC_ERROR_BAD_STATUS ||
error_code_next == RC_ERROR_TIMEOUT || error_code_next == RC_ERROR_FLR) begin
// transfer-terminating error
if (error_code_next == RC_ERROR_POISONED) begin
// poisoned TLP, handle as advisory non-fatal (6.2.3.2.4.3)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
status_fifo_error_next = DMA_ERROR_PCIE_CPL_POISONED;
end else if (error_code_next == RC_ERROR_BAD_STATUS) begin
// bad status, handle as advisory non-fatal (6.2.3.2.4.1)
// drop TLP and report correctable error
status_error_cor_next = 1'b1;
if (cpl_status_reg == CPL_STATUS_CA) begin
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_CA;
end else begin
status_fifo_error_next = DMA_ERROR_PCIE_CPL_STATUS_UR;
end
end else if (error_code_next == RC_ERROR_TIMEOUT) begin
// timeout, handle as uncorrectable (6.2.3.2.4.4)
// drop TLP and report uncorrectable error
status_error_uncor_next = 1'b1;
status_fifo_error_next = DMA_ERROR_TIMEOUT;
end else if (error_code_next == RC_ERROR_FLR) begin
// FLR; not an actual completion so no error to report
// drop TLP
status_fifo_error_next = DMA_ERROR_PCIE_FLR;
end
finish_tag_next = 1'b1;
status_fifo_skip_next = 1'b1;
status_fifo_finish_next = 1'b1;
status_fifo_we_next = 1'b1;
s_axis_rc_tready_next = 1'b1;
tlp_state_next = TLP_STATE_WAIT_END;
end else begin
// no error
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
tlp_state_next = TLP_STATE_START;
end
end else begin
tlp_state_next = TLP_STATE_HEADER;
end
end
TLP_STATE_START: begin
s_axis_rc_tready_next = !m_axi_awvalid || m_axi_awready;
if (s_axis_rc_tready && s_axis_rc_tvalid) begin
transfer_in_save = 1'b1;
if (AXIS_PCIE_DATA_WIDTH == 64) begin
input_cycle_count_next = (tr_count_next + 4+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
end else begin
input_cycle_count_next = (tr_count_next + 12+lower_addr_reg[1:0] - 1) >> (AXI_BURST_SIZE);
end
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
last_cycle_next = output_cycle_count_next == 0;
input_active_next = 1'b1;
m_axi_awaddr_next = axi_addr_reg;
m_axi_awlen_next = output_cycle_count_next;
m_axi_awvalid_next = 1'b1;
axi_addr_next = axi_addr_reg + tr_count_next;
op_count_next = op_count_reg - tr_count_next;
// AXI transfer size computation
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
// packet smaller than max burst size
if (((axi_addr_next & 12'hfff) + (op_count_next & 12'hfff)) >> 12 != 0 || op_count_next >> 12 != 0) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = op_count_next;
end
end else begin
// packet larger than max burst size
if (((axi_addr_next & 12'hfff) + AXI_MAX_BURST_SIZE) >> 12 != 0) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
end
end
input_active_next = input_cycle_count_next != 0;
input_cycle_count_next = input_cycle_count_next - 1;
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && bubble_cycle_reg && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready);
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
tlp_state_next = TLP_STATE_START;
end
end
TLP_STATE_TRANSFER: begin
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_reg && !(first_cycle_reg && !bubble_cycle_reg) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
if (m_axi_wready_int_reg && ((s_axis_rc_tready && s_axis_rc_tvalid) || !input_active_reg || (first_cycle_reg && !bubble_cycle_reg)) && (!last_cycle_reg || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready)) begin
transfer_in_save = s_axis_rc_tready && s_axis_rc_tvalid;
if (first_cycle_reg && !bubble_cycle_reg) begin
m_axi_wdata_int = {save_axis_tdata_reg, {AXIS_PCIE_DATA_WIDTH{1'b0}}} >> ((AXI_STRB_WIDTH-offset_reg)*8);
end else begin
m_axi_wdata_int = shift_axis_tdata;
end
if (zero_len_reg) begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b0}};
end else if (first_cycle_reg) begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}} << first_cycle_offset_reg;
end else begin
m_axi_wstrb_int = {AXI_STRB_WIDTH{1'b1}};
end
if (input_active_reg && !(first_cycle_reg && !bubble_cycle_reg)) begin
input_cycle_count_next = input_cycle_count_reg - 1;
input_active_next = input_cycle_count_reg != 0;
end
output_cycle_count_next = output_cycle_count_reg - 1;
last_cycle_next = output_cycle_count_next == 0;
if (last_cycle_reg) begin
if (last_cycle_offset_reg != 0 && op_count_reg == 0 && !zero_len_reg) begin
m_axi_wstrb_int = m_axi_wstrb_int & {AXI_STRB_WIDTH{1'b1}} >> (AXI_STRB_WIDTH-last_cycle_offset_reg);
end
m_axi_wlast_int = 1'b1;
end
m_axi_wvalid_int = 1'b1;
first_cycle_next = 1'b0;
if (!last_cycle_reg) begin
// current transfer not finished yet
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_reg == 0 || !m_axi_awvalid || m_axi_awready);
tlp_state_next = TLP_STATE_TRANSFER;
end else if (op_count_reg != 0) begin
// current transfer done, but operation not finished yet
// keep offset, no bubble cycles, not first cycle
bubble_cycle_next = 1'b0;
first_cycle_next = 1'b0;
input_cycle_count_next = (tr_count_next - offset_reg - 1) >> (AXI_BURST_SIZE);
output_cycle_count_next = (tr_count_next + axi_addr_reg[OFFSET_WIDTH-1:0] - 1) >> (AXI_BURST_SIZE);
last_cycle_offset_next = axi_addr_reg[OFFSET_WIDTH-1:0] + tr_count_next;
last_cycle_next = output_cycle_count_next == 0;
input_active_next = tr_count_next > offset_reg;
m_axi_awaddr_next = axi_addr_reg;
m_axi_awlen_next = output_cycle_count_next;
m_axi_awvalid_next = 1'b1;
axi_addr_next = axi_addr_reg + tr_count_next;
op_count_next = op_count_reg - tr_count_next;
// AXI transfer size computation
if (op_count_next <= AXI_MAX_BURST_SIZE-axi_addr_next[OFFSET_WIDTH-1:0] || AXI_MAX_BURST_SIZE >= 4096) begin
// packet smaller than max burst size
if (((axi_addr_next & 12'hfff) + (op_count_next & 12'hfff)) >> 12 != 0 || op_count_next >> 12 != 0) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = op_count_next;
end
end else begin
// packet larger than max burst size
if (((axi_addr_next & 12'hfff) + AXI_MAX_BURST_SIZE) >> 12 != 0) begin
// crosses 4k boundary
tr_count_next = 13'h1000 - axi_addr_next[11:0];
end else begin
// does not cross 4k boundary, send one request
tr_count_next = AXI_MAX_BURST_SIZE - axi_addr_next[OFFSET_WIDTH-1:0];
end
end
status_fifo_skip_next = 1'b0;
status_fifo_finish_next = 1'b0;
status_fifo_error_next = DMA_ERROR_NONE;
status_fifo_we_next = 1'b1;
s_axis_rc_tready_next = m_axi_wready_int_early && input_active_next && (!last_cycle_next || op_count_next == 0 || !m_axi_awvalid || m_axi_awready);
tlp_state_next = TLP_STATE_TRANSFER;
end else begin
status_fifo_skip_next = 1'b0;
status_fifo_finish_next = 1'b0;
status_fifo_error_next = DMA_ERROR_NONE;
status_fifo_we_next = 1'b1;
if (final_cpl_reg) begin
// last completion in current read request (PCIe tag)
// release tag
finish_tag_next = 1'b1;
status_fifo_finish_next = 1'b1;
end
if (AXIS_PCIE_DATA_WIDTH > 64) begin
s_axis_rc_tready_next = 1'b0;
end else begin
s_axis_rc_tready_next = init_done_reg && !status_fifo_half_full_reg;
end
tlp_state_next = TLP_STATE_IDLE;
end
end else begin
tlp_state_next = TLP_STATE_TRANSFER;
end
end
TLP_STATE_WAIT_END: begin
// wait end state, wait for end of TLP
s_axis_rc_tready_next = 1'b1;
if (s_axis_rc_tready & s_axis_rc_tvalid) begin
if (s_axis_rc_tlast) begin
if (AXIS_PCIE_DATA_WIDTH > 64) begin
s_axis_rc_tready_next = 1'b0;
end else begin
s_axis_rc_tready_next = init_done_reg && !status_fifo_half_full_reg;
end
tlp_state_next = TLP_STATE_IDLE;
end else begin
tlp_state_next = TLP_STATE_WAIT_END;
end
end else begin
tlp_state_next = TLP_STATE_WAIT_END;
end
end
endcase
pcie_tag_table_finish_ptr = pcie_tag_reg;
pcie_tag_table_finish_en = 1'b0;
pcie_tag_fifo_wr_tag = pcie_tag_reg;
pcie_tag_fifo_1_we = 1'b0;
pcie_tag_fifo_2_we = 1'b0;
if (init_pcie_tag_reg) begin
// initialize FIFO
pcie_tag_fifo_wr_tag = init_count_reg;
if (pcie_tag_fifo_wr_tag < PCIE_TAG_COUNT_1) begin
pcie_tag_fifo_1_we = 1'b1;
end else if (pcie_tag_fifo_wr_tag) begin
pcie_tag_fifo_2_we = 1'b1;
end
end else if (finish_tag_reg) begin
pcie_tag_table_finish_ptr = pcie_tag_reg;
pcie_tag_table_finish_en = 1'b1;
pcie_tag_fifo_wr_tag = pcie_tag_reg;
if (pcie_tag_fifo_wr_tag < PCIE_TAG_COUNT_1) begin
pcie_tag_fifo_1_we = 1'b1;
end else begin
pcie_tag_fifo_2_we = 1'b1;
end
end
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg;
status_fifo_wr_op_tag = op_tag_reg;
status_fifo_wr_skip = status_fifo_skip_reg;
status_fifo_wr_finish = status_fifo_finish_reg;
status_fifo_wr_error = status_fifo_error_reg;
status_fifo_we = 1'b0;
if (status_fifo_we_reg) begin
status_fifo_wr_op_tag = op_tag_reg;
status_fifo_wr_skip = status_fifo_skip_reg;
status_fifo_wr_finish = status_fifo_finish_reg;
status_fifo_wr_error = status_fifo_error_reg;
status_fifo_we = 1'b1;
end
status_fifo_rd_op_tag_next = status_fifo_rd_op_tag_reg;
status_fifo_rd_skip_next = status_fifo_rd_skip_reg;
status_fifo_rd_finish_next = status_fifo_rd_finish_reg;
status_fifo_rd_error_next = status_fifo_rd_error_reg;
status_fifo_rd_valid_next = status_fifo_rd_valid_reg;
m_axis_read_desc_status_tag_next = op_table_tag[status_fifo_rd_op_tag_reg];
if (status_fifo_rd_error_reg != DMA_ERROR_NONE) begin
m_axis_read_desc_status_error_next = status_fifo_rd_error_reg;
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_SLVERR) begin
m_axis_read_desc_status_error_next = DMA_ERROR_AXI_WR_SLVERR;
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_DECERR) begin
m_axis_read_desc_status_error_next = DMA_ERROR_AXI_WR_DECERR;
end else if (op_table_error_a[status_fifo_rd_op_tag_reg] != op_table_error_b[status_fifo_rd_op_tag_reg]) begin
m_axis_read_desc_status_error_next = op_table_error_code[status_fifo_rd_op_tag_reg];
end else begin
m_axis_read_desc_status_error_next = DMA_ERROR_NONE;
end
m_axis_read_desc_status_valid_next = 1'b0;
op_table_update_status_ptr = status_fifo_rd_op_tag_reg;
if (status_fifo_rd_error_reg != DMA_ERROR_NONE) begin
op_table_update_status_error = status_fifo_rd_error_reg;
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_SLVERR) begin
op_table_update_status_error = DMA_ERROR_AXI_WR_SLVERR;
end else if (m_axi_bready && m_axi_bvalid && m_axi_bresp == AXI_RESP_DECERR) begin
op_table_update_status_error = DMA_ERROR_AXI_WR_DECERR;
end else begin
op_table_update_status_error = DMA_ERROR_NONE;
end
op_table_update_status_en = 1'b0;
op_table_read_finish_ptr = status_fifo_rd_op_tag_reg;
op_table_read_finish_en = 1'b0;
op_tag_fifo_wr_tag = status_fifo_rd_op_tag_reg;
op_tag_fifo_we = 1'b0;
m_axi_bready_next = m_axi_bready_reg;
if (init_op_tag_reg) begin
// initialize FIFO
op_tag_fifo_wr_tag = init_count_reg;
op_tag_fifo_we = 1'b1;
end else if (status_fifo_rd_valid_reg && (status_fifo_rd_skip_reg || (m_axi_bready && m_axi_bvalid))) begin
// got write completion, pop and return status
status_fifo_rd_valid_next = 1'b0;
op_table_update_status_en = 1'b1;
m_axi_bready_next = 1'b0;
if (status_fifo_rd_finish_reg) begin
// mark done
op_table_read_finish_en = 1'b1;
if (op_table_read_commit[op_table_read_finish_ptr] && (op_table_read_count_start[op_table_read_finish_ptr] == op_table_read_count_finish[op_table_read_finish_ptr])) begin
op_tag_fifo_we = 1'b1;
m_axis_read_desc_status_valid_next = 1'b1;
end
end
end
if (!status_fifo_rd_valid_next && status_fifo_rd_ptr_reg != status_fifo_wr_ptr_reg) begin
// status FIFO not empty
status_fifo_rd_op_tag_next = status_fifo_op_tag[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_skip_next = status_fifo_skip[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_finish_next = status_fifo_finish[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_error_next = status_fifo_error[status_fifo_rd_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]];
status_fifo_rd_valid_next = 1'b1;
status_fifo_rd_ptr_next = status_fifo_rd_ptr_reg + 1;
end
m_axi_bready_next = status_fifo_rd_valid_next && !status_fifo_rd_skip_next;
end
always @(posedge clk) begin
req_state_reg <= req_state_next;
tlp_state_reg <= tlp_state_next;
if (!init_done_reg) begin
{init_done_reg, init_count_reg} <= init_count_reg + 1;
init_pcie_tag_reg <= init_count_reg + 1 < 2**PCIE_TAG_WIDTH;
init_op_tag_reg <= init_count_reg + 1 < 2**OP_TAG_WIDTH;
end
status_error_cor_reg <= status_error_cor_next;
status_error_uncor_reg <= status_error_uncor_next;
req_pcie_addr_reg <= req_pcie_addr_next;
req_axi_addr_reg <= req_axi_addr_next;
req_op_count_reg <= req_op_count_next;
req_tlp_count_reg <= req_tlp_count_next;
req_zero_len_reg <= req_zero_len_next;
req_op_tag_reg <= req_op_tag_next;
req_op_tag_valid_reg <= req_op_tag_valid_next;
req_pcie_tag_reg <= req_pcie_tag_next;
req_pcie_tag_valid_reg <= req_pcie_tag_valid_next;
lower_addr_reg <= lower_addr_next;
byte_count_reg <= byte_count_next;
error_code_reg <= error_code_next;
axi_addr_reg <= axi_addr_next;
op_count_reg <= op_count_next;
tr_count_reg <= tr_count_next;
zero_len_reg <= zero_len_next;
op_dword_count_reg <= op_dword_count_next;
cpl_status_reg <= cpl_status_next;
input_cycle_count_reg <= input_cycle_count_next;
output_cycle_count_reg <= output_cycle_count_next;
input_active_reg <= input_active_next;
bubble_cycle_reg <= bubble_cycle_next;
first_cycle_reg <= first_cycle_next;
last_cycle_reg <= last_cycle_next;
pcie_tag_reg <= pcie_tag_next;
op_tag_reg <= op_tag_next;
final_cpl_reg <= final_cpl_next;
finish_tag_reg <= finish_tag_next;
offset_reg <= offset_next;
first_cycle_offset_reg <= first_cycle_offset_next;
last_cycle_offset_reg <= last_cycle_offset_next;
s_axis_rc_tready_reg <= s_axis_rc_tready_next;
s_axis_read_desc_ready_reg <= s_axis_read_desc_ready_next;
m_axis_read_desc_status_tag_reg <= m_axis_read_desc_status_tag_next;
m_axis_read_desc_status_error_reg <= m_axis_read_desc_status_error_next;
m_axis_read_desc_status_valid_reg <= m_axis_read_desc_status_valid_next;
m_axi_awaddr_reg <= m_axi_awaddr_next;
m_axi_awlen_reg <= m_axi_awlen_next;
m_axi_awvalid_reg <= m_axi_awvalid_next;
m_axi_bready_reg <= m_axi_bready_next;
max_read_request_size_dw_reg <= 11'd32 << (max_read_request_size > 5 ? 5 : max_read_request_size);
have_credit_reg <= pcie_tx_fc_nph_av > 4;
if (status_fifo_we) begin
status_fifo_op_tag[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_op_tag;
status_fifo_skip[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_skip;
status_fifo_finish[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_finish;
status_fifo_error[status_fifo_wr_ptr_reg[STATUS_FIFO_ADDR_WIDTH-1:0]] <= status_fifo_wr_error;
status_fifo_wr_ptr_reg <= status_fifo_wr_ptr_reg + 1;
end
status_fifo_rd_ptr_reg <= status_fifo_rd_ptr_next;
status_fifo_skip_reg <= status_fifo_skip_next;
status_fifo_finish_reg <= status_fifo_finish_next;
status_fifo_error_reg <= status_fifo_error_next;
status_fifo_we_reg <= status_fifo_we_next;
status_fifo_rd_op_tag_reg <= status_fifo_rd_op_tag_next;
status_fifo_rd_skip_reg <= status_fifo_rd_skip_next;
status_fifo_rd_finish_reg <= status_fifo_rd_finish_next;
status_fifo_rd_error_reg <= status_fifo_rd_error_next;
status_fifo_rd_valid_reg <= status_fifo_rd_valid_next;
status_fifo_half_full_reg <= $unsigned(status_fifo_wr_ptr_reg - status_fifo_rd_ptr_reg) >= 2**(STATUS_FIFO_ADDR_WIDTH-1);
if (inc_active_tx && !s_axis_rq_seq_num_valid_0 && !s_axis_rq_seq_num_valid_1) begin
// inc by 1
active_tx_count_reg <= active_tx_count_reg + 1;
active_tx_count_av_reg <= active_tx_count_reg < (TX_LIMIT-1);
end else if ((inc_active_tx && s_axis_rq_seq_num_valid_0 && s_axis_rq_seq_num_valid_1) || (!inc_active_tx && (s_axis_rq_seq_num_valid_0 ^ s_axis_rq_seq_num_valid_1))) begin
// dec by 1
active_tx_count_reg <= active_tx_count_reg - 1;
active_tx_count_av_reg <= 1'b1;
end else if (!inc_active_tx && s_axis_rq_seq_num_valid_0 && s_axis_rq_seq_num_valid_1) begin
// dec by 2
active_tx_count_reg <= active_tx_count_reg - 2;
active_tx_count_av_reg <= 1'b1;
end else begin
active_tx_count_av_reg <= active_tx_count_reg < TX_LIMIT;
end
if (transfer_in_save) begin
save_axis_tdata_reg <= s_axis_rc_tdata;
end
pcie_tag_table_start_ptr_reg <= pcie_tag_table_start_ptr_next;
pcie_tag_table_start_axi_addr_reg <= pcie_tag_table_start_axi_addr_next;
pcie_tag_table_start_op_tag_reg <= pcie_tag_table_start_op_tag_next;
pcie_tag_table_start_zero_len_reg <= pcie_tag_table_start_zero_len_next;
pcie_tag_table_start_en_reg <= pcie_tag_table_start_en_next;
if (init_pcie_tag_reg) begin
pcie_tag_table_active_a[init_count_reg] <= 0;
end else if (pcie_tag_table_start_en_reg) begin
pcie_tag_table_axi_addr[pcie_tag_table_start_ptr_reg] <= pcie_tag_table_start_axi_addr_reg;
pcie_tag_table_op_tag[pcie_tag_table_start_ptr_reg] <= pcie_tag_table_start_op_tag_reg;
pcie_tag_table_zero_len[pcie_tag_table_start_ptr_reg] <= pcie_tag_table_start_zero_len_reg;
pcie_tag_table_active_a[pcie_tag_table_start_ptr_reg] <= !pcie_tag_table_active_b[pcie_tag_table_start_ptr_reg];
end
if (init_pcie_tag_reg) begin
pcie_tag_table_active_b[init_count_reg] <= 0;
end else if (pcie_tag_table_finish_en) begin
pcie_tag_table_active_b[pcie_tag_table_finish_ptr] <= pcie_tag_table_active_a[pcie_tag_table_finish_ptr];
end
if (pcie_tag_fifo_1_we) begin
pcie_tag_fifo_1_mem[pcie_tag_fifo_1_wr_ptr_reg[PCIE_TAG_WIDTH_1-1:0]] <= pcie_tag_fifo_wr_tag;
pcie_tag_fifo_1_wr_ptr_reg <= pcie_tag_fifo_1_wr_ptr_reg + 1;
end
pcie_tag_fifo_1_rd_ptr_reg <= pcie_tag_fifo_1_rd_ptr_next;
if (pcie_tag_fifo_2_we) begin
pcie_tag_fifo_2_mem[pcie_tag_fifo_2_wr_ptr_reg[PCIE_TAG_WIDTH_2-1:0]] <= pcie_tag_fifo_wr_tag;
pcie_tag_fifo_2_wr_ptr_reg <= pcie_tag_fifo_2_wr_ptr_reg + 1;
end
pcie_tag_fifo_2_rd_ptr_reg <= pcie_tag_fifo_2_rd_ptr_next;
if (init_op_tag_reg) begin
op_table_read_init_a[init_count_reg] <= 1'b0;
op_table_error_a[init_count_reg] <= 1'b0;
end else if (op_table_start_en) begin
op_table_tag[op_table_start_ptr] <= op_table_start_tag;
op_table_read_init_a[op_table_start_ptr] <= !op_table_read_init_b[op_table_start_ptr];
op_table_error_a[op_table_start_ptr] <= op_table_error_b[op_table_start_ptr];
end
if (init_op_tag_reg) begin
op_table_read_init_b[init_count_reg] <= 1'b0;
op_table_read_count_start[init_count_reg] <= 0;
end else if (op_table_read_start_en) begin
op_table_read_init_b[op_table_read_start_ptr] <= op_table_read_init_a[op_table_read_start_ptr];
op_table_read_commit[op_table_read_start_ptr] <= op_table_read_start_commit;
if (op_table_read_init_b[op_table_read_start_ptr] != op_table_read_init_a[op_table_read_start_ptr]) begin
op_table_read_count_start[op_table_read_start_ptr] <= op_table_read_count_finish[op_table_read_start_ptr];
end else begin
op_table_read_count_start[op_table_read_start_ptr] <= op_table_read_count_start[op_table_read_start_ptr] + 1;
end
end
if (init_op_tag_reg) begin
op_table_error_b[init_count_reg] <= 1'b0;
end else if (op_table_update_status_en) begin
if (op_table_update_status_error != 0) begin
op_table_error_code[op_table_update_status_ptr] <= op_table_update_status_error;
op_table_error_b[op_table_update_status_ptr] <= !op_table_error_a[op_table_update_status_ptr];
end
end
if (init_op_tag_reg) begin
op_table_read_count_finish[init_count_reg] <= 0;
end else if (op_table_read_finish_en) begin
op_table_read_count_finish[op_table_read_finish_ptr] <= op_table_read_count_finish[op_table_read_finish_ptr] + 1;
end
if (op_tag_fifo_we) begin
op_tag_fifo_mem[op_tag_fifo_wr_ptr_reg[OP_TAG_WIDTH-1:0]] <= op_tag_fifo_wr_tag;
op_tag_fifo_wr_ptr_reg <= op_tag_fifo_wr_ptr_reg + 1;
end
op_tag_fifo_rd_ptr_reg <= op_tag_fifo_rd_ptr_next;
if (rst) begin
req_state_reg <= REQ_STATE_IDLE;
tlp_state_reg <= TLP_STATE_IDLE;
init_count_reg <= 0;
init_done_reg <= 1'b0;
init_pcie_tag_reg <= 1'b1;
init_op_tag_reg <= 1'b1;
req_op_tag_valid_reg <= 1'b0;
req_pcie_tag_valid_reg <= 1'b0;
finish_tag_reg <= 1'b0;
s_axis_rc_tready_reg <= 1'b0;
s_axis_read_desc_ready_reg <= 1'b0;
m_axis_read_desc_status_valid_reg <= 1'b0;
m_axi_awvalid_reg <= 1'b0;
m_axi_bready_reg <= 1'b0;
status_fifo_wr_ptr_reg <= 0;
status_fifo_rd_ptr_reg <= 0;
status_fifo_we_reg <= 1'b0;
status_fifo_rd_valid_reg <= 1'b0;
active_tx_count_reg <= {RQ_SEQ_NUM_WIDTH{1'b0}};
active_tx_count_av_reg <= 1'b1;
pcie_tag_table_start_en_reg <= 1'b0;
pcie_tag_fifo_1_wr_ptr_reg <= 0;
pcie_tag_fifo_1_rd_ptr_reg <= 0;
pcie_tag_fifo_2_wr_ptr_reg <= 0;
pcie_tag_fifo_2_rd_ptr_reg <= 0;
op_tag_fifo_wr_ptr_reg <= 0;
op_tag_fifo_rd_ptr_reg <= 0;
status_error_cor_reg <= 1'b0;
status_error_uncor_reg <= 1'b0;
end
end
// output datapath logic (PCIe TLP)
reg [AXIS_PCIE_DATA_WIDTH-1:0] m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg m_axis_rq_tvalid_reg = 1'b0, m_axis_rq_tvalid_next;
reg m_axis_rq_tlast_reg = 1'b0;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
reg [AXIS_PCIE_DATA_WIDTH-1:0] temp_m_axis_rq_tdata_reg = {AXIS_PCIE_DATA_WIDTH{1'b0}};
reg [AXIS_PCIE_KEEP_WIDTH-1:0] temp_m_axis_rq_tkeep_reg = {AXIS_PCIE_KEEP_WIDTH{1'b0}};
reg temp_m_axis_rq_tvalid_reg = 1'b0, temp_m_axis_rq_tvalid_next;
reg temp_m_axis_rq_tlast_reg = 1'b0;
reg [AXIS_PCIE_RQ_USER_WIDTH-1:0] temp_m_axis_rq_tuser_reg = {AXIS_PCIE_RQ_USER_WIDTH{1'b0}};
// datapath control
reg store_axis_rq_int_to_output;
reg store_axis_rq_int_to_temp;
reg store_axis_rq_temp_to_output;
assign m_axis_rq_tdata = m_axis_rq_tdata_reg;
assign m_axis_rq_tkeep = m_axis_rq_tkeep_reg;
assign m_axis_rq_tvalid = m_axis_rq_tvalid_reg;
assign m_axis_rq_tlast = m_axis_rq_tlast_reg;
assign m_axis_rq_tuser = m_axis_rq_tuser_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axis_rq_tready_int_early = m_axis_rq_tready || (!temp_m_axis_rq_tvalid_reg && (!m_axis_rq_tvalid_reg || !m_axis_rq_tvalid_int));
always @* begin
// transfer sink ready state to source
m_axis_rq_tvalid_next = m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
store_axis_rq_int_to_output = 1'b0;
store_axis_rq_int_to_temp = 1'b0;
store_axis_rq_temp_to_output = 1'b0;
if (m_axis_rq_tready_int_reg) begin
// input is ready
if (m_axis_rq_tready || !m_axis_rq_tvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axis_rq_tvalid_next = m_axis_rq_tvalid_int;
store_axis_rq_int_to_temp = 1'b1;
end
end else if (m_axis_rq_tready) begin
// input is not ready, but output is ready
m_axis_rq_tvalid_next = temp_m_axis_rq_tvalid_reg;
temp_m_axis_rq_tvalid_next = 1'b0;
store_axis_rq_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axis_rq_tvalid_reg <= 1'b0;
m_axis_rq_tready_int_reg <= 1'b0;
temp_m_axis_rq_tvalid_reg <= 1'b0;
end else begin
m_axis_rq_tvalid_reg <= m_axis_rq_tvalid_next;
m_axis_rq_tready_int_reg <= m_axis_rq_tready_int_early;
temp_m_axis_rq_tvalid_reg <= temp_m_axis_rq_tvalid_next;
end
// datapath
if (store_axis_rq_int_to_output) begin
m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end else if (store_axis_rq_temp_to_output) begin
m_axis_rq_tdata_reg <= temp_m_axis_rq_tdata_reg;
m_axis_rq_tkeep_reg <= temp_m_axis_rq_tkeep_reg;
m_axis_rq_tlast_reg <= temp_m_axis_rq_tlast_reg;
m_axis_rq_tuser_reg <= temp_m_axis_rq_tuser_reg;
end
if (store_axis_rq_int_to_temp) begin
temp_m_axis_rq_tdata_reg <= m_axis_rq_tdata_int;
temp_m_axis_rq_tkeep_reg <= m_axis_rq_tkeep_int;
temp_m_axis_rq_tlast_reg <= m_axis_rq_tlast_int;
temp_m_axis_rq_tuser_reg <= m_axis_rq_tuser_int;
end
end
// output datapath logic (AXI write data)
reg [AXI_DATA_WIDTH-1:0] m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg m_axi_wvalid_reg = 1'b0, m_axi_wvalid_next;
reg m_axi_wlast_reg = 1'b0;
reg [AXI_DATA_WIDTH-1:0] temp_m_axi_wdata_reg = {AXI_DATA_WIDTH{1'b0}};
reg [AXI_STRB_WIDTH-1:0] temp_m_axi_wstrb_reg = {AXI_STRB_WIDTH{1'b0}};
reg temp_m_axi_wvalid_reg = 1'b0, temp_m_axi_wvalid_next;
reg temp_m_axi_wlast_reg = 1'b0;
// datapath control
reg store_axi_w_int_to_output;
reg store_axi_w_int_to_temp;
reg store_axi_w_temp_to_output;
assign m_axi_wdata = m_axi_wdata_reg;
assign m_axi_wstrb = m_axi_wstrb_reg;
assign m_axi_wvalid = m_axi_wvalid_reg;
assign m_axi_wlast = m_axi_wlast_reg;
// enable ready input next cycle if output is ready or the temp reg will not be filled on the next cycle (output reg empty or no input)
assign m_axi_wready_int_early = m_axi_wready || (!temp_m_axi_wvalid_reg && (!m_axi_wvalid_reg || !m_axi_wvalid_int));
always @* begin
// transfer sink ready state to source
m_axi_wvalid_next = m_axi_wvalid_reg;
temp_m_axi_wvalid_next = temp_m_axi_wvalid_reg;
store_axi_w_int_to_output = 1'b0;
store_axi_w_int_to_temp = 1'b0;
store_axi_w_temp_to_output = 1'b0;
if (m_axi_wready_int_reg) begin
// input is ready
if (m_axi_wready || !m_axi_wvalid_reg) begin
// output is ready or currently not valid, transfer data to output
m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_output = 1'b1;
end else begin
// output is not ready, store input in temp
temp_m_axi_wvalid_next = m_axi_wvalid_int;
store_axi_w_int_to_temp = 1'b1;
end
end else if (m_axi_wready) begin
// input is not ready, but output is ready
m_axi_wvalid_next = temp_m_axi_wvalid_reg;
temp_m_axi_wvalid_next = 1'b0;
store_axi_w_temp_to_output = 1'b1;
end
end
always @(posedge clk) begin
if (rst) begin
m_axi_wvalid_reg <= 1'b0;
m_axi_wready_int_reg <= 1'b0;
temp_m_axi_wvalid_reg <= 1'b0;
end else begin
m_axi_wvalid_reg <= m_axi_wvalid_next;
m_axi_wready_int_reg <= m_axi_wready_int_early;
temp_m_axi_wvalid_reg <= temp_m_axi_wvalid_next;
end
// datapath
if (store_axi_w_int_to_output) begin
m_axi_wdata_reg <= m_axi_wdata_int;
m_axi_wstrb_reg <= m_axi_wstrb_int;
m_axi_wlast_reg <= m_axi_wlast_int;
end else if (store_axi_w_temp_to_output) begin
m_axi_wdata_reg <= temp_m_axi_wdata_reg;
m_axi_wstrb_reg <= temp_m_axi_wstrb_reg;
m_axi_wlast_reg <= temp_m_axi_wlast_reg;
end
if (store_axi_w_int_to_temp) begin
temp_m_axi_wdata_reg <= m_axi_wdata_int;
temp_m_axi_wstrb_reg <= m_axi_wstrb_int;
temp_m_axi_wlast_reg <= m_axi_wlast_int;
end
end
endmodule
`resetall