1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/tb/test_pcie.py
2018-09-25 19:50:57 -07:00

251 lines
7.2 KiB
Python
Executable File

#!/usr/bin/env python
"""
Copyright (c) 2018 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
"""
from myhdl import *
import struct
import os
import pcie
class TestEP(pcie.MemoryEndpoint):
def __init__(self, *args, **kwargs):
super(TestEP, self).__init__(*args, **kwargs)
self.vendor_id = 0x1234
self.device_id = 0x5678
self.add_mem_region(1024)
self.add_prefetchable_mem_region(1024*1024)
self.add_io_region(32)
def bench():
# Inputs
clk = Signal(bool(0))
rst = Signal(bool(0))
current_test = Signal(intbv(0)[8:])
# Outputs
# PCIe devices
rc = pcie.RootComplex()
ep = TestEP()
dev = pcie.Device(ep)
rc.make_port().connect(dev)
sw = pcie.Switch()
rc.make_port().connect(sw)
ep2 = TestEP()
dev2 = pcie.Device(ep2)
sw.make_port().connect(dev2)
ep3 = TestEP()
dev3 = pcie.Device(ep3)
sw.make_port().connect(dev3)
ep4 = TestEP()
dev4 = pcie.Device(ep4)
rc.make_port().connect(dev4)
@always(delay(2))
def clkgen():
clk.next = not clk
@instance
def check():
yield delay(100)
yield clk.posedge
rst.next = 1
yield clk.posedge
rst.next = 0
yield clk.posedge
yield delay(100)
yield clk.posedge
yield clk.posedge
print("test 1: enumeration")
current_test.next = 1
yield rc.enumerate(enable_bus_mastering=True)
# val = yield from rc.config_read((0, 1, 0), 0x000, 4)
# print(val)
# val = yield from rc.config_read((1, 0, 0), 0x000, 4)
# print(val)
# yield rc.config_write((1, 0, 0), 0x010, b'\xff'*4*6)
# val = yield from rc.config_read((1, 0, 0), 0x010, 4*6)
# print(val)
for k in range(6):
print("0x%08x / 0x%08x" %(ep.bar[k], ep.bar_mask[k]))
print(sw.upstream_bridge.pri_bus_num)
print(sw.upstream_bridge.sec_bus_num)
print(sw.upstream_bridge.sub_bus_num)
print("0x%08x" % sw.upstream_bridge.io_base)
print("0x%08x" % sw.upstream_bridge.io_limit)
print("0x%08x" % sw.upstream_bridge.mem_base)
print("0x%08x" % sw.upstream_bridge.mem_limit)
print("0x%016x" % sw.upstream_bridge.prefetchable_mem_base)
print("0x%016x" % sw.upstream_bridge.prefetchable_mem_limit)
yield delay(100)
yield clk.posedge
print("test 2: IO and memory read/write")
current_test.next = 2
yield rc.io_write(0x80000000, bytearray(range(16)), 1000)
assert ep.read_region(3, 0, 16) == bytearray(range(16))
val = yield from rc.io_read(0x80000000, 16, 1000)
assert val == bytearray(range(16))
yield rc.mem_write(0x80000000, bytearray(range(16)), 1000)
yield delay(1000)
assert ep.read_region(0, 0, 16) == bytearray(range(16))
val = yield from rc.mem_read(0x80000000, 16, 1000)
assert val == bytearray(range(16))
yield rc.mem_write(0x8000000000000000, bytearray(range(16)), 1000)
yield delay(1000)
assert ep.read_region(1, 0, 16) == bytearray(range(16))
val = yield from rc.mem_read(0x8000000000000000, 16, 1000)
assert val == bytearray(range(16))
yield delay(100)
# yield clk.posedge
# print("test 3: Large read/write")
# current_test.next = 3
# yield rc.mem_write(0x8000000000000000, bytearray(range(256))*32, 100)
# yield delay(100)
# assert ep.read_region(1, 0, 256*32) == bytearray(range(256))*32
# val = yield from rc.mem_read(0x8000000000000000, 256*32, 100)
# assert val == bytearray(range(256))*32
# yield delay(100)
yield clk.posedge
print("test 4: Root complex memory")
current_test.next = 4
mem_base, mem_data = rc.alloc_region(1024*1024)
io_base, io_data = rc.alloc_io_region(1024)
yield rc.io_write(io_base, bytearray(range(16)))
assert io_data[0:16] == bytearray(range(16))
val = yield from rc.io_read(io_base, 16)
assert val == bytearray(range(16))
yield rc.mem_write(mem_base, bytearray(range(16)))
assert mem_data[0:16] == bytearray(range(16))
val = yield from rc.mem_read(mem_base, 16)
assert val == bytearray(range(16))
yield delay(100)
yield clk.posedge
print("test 5: device-to-device DMA")
current_test.next = 5
yield ep.io_write(0x80001000, bytearray(range(16)), 10000)
assert ep2.read_region(3, 0, 16) == bytearray(range(16))
val = yield from ep.io_read(0x80001000, 16, 10000)
assert val == bytearray(range(16))
yield ep.mem_write(0x80100000, bytearray(range(16)), 10000)
yield delay(1000)
assert ep2.read_region(0, 0, 16) == bytearray(range(16))
val = yield from ep.mem_read(0x80100000, 16, 10000)
assert val == bytearray(range(16))
yield ep.mem_write(0x8000000000100000, bytearray(range(16)), 10000)
yield delay(1000)
assert ep2.read_region(1, 0, 16) == bytearray(range(16))
val = yield from ep.mem_read(0x8000000000100000, 16, 10000)
assert val == bytearray(range(16))
yield delay(100)
yield clk.posedge
print("test 6: device-to-root DMA")
current_test.next = 6
yield ep.io_write(io_base, bytearray(range(16)), 1000)
assert io_data[0:16] == bytearray(range(16))
val = yield from ep.io_read(io_base, 16, 1000)
assert val == bytearray(range(16))
yield ep.mem_write(mem_base, bytearray(range(16)), 1000)
yield delay(1000)
assert mem_data[0:16] == bytearray(range(16))
val = yield from ep.mem_read(mem_base, 16, 1000)
assert val == bytearray(range(16))
yield delay(100)
val = yield from rc.capability_read((1, 0, 0), pcie.PCIE_CAP_ID, 0x000, 4)
raise StopSimulation
return instances()
def test_bench():
os.chdir(os.path.dirname(os.path.abspath(__file__)))
#sim = Simulation(bench())
traceSignals.name = os.path.basename(__file__).rsplit('.',1)[0]
sim = Simulation(traceSignals(bench))
sim.run()
if __name__ == '__main__':
print("Running test...")
test_bench()