1
0
mirror of https://github.com/corundum/corundum.git synced 2025-01-16 08:12:53 +08:00
corundum/fpga/common/rtl/stats_collect.v

236 lines
6.8 KiB
Verilog

/*
Copyright (c) 2021 Alex Forencich
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
// Language: Verilog 2001
`resetall
`timescale 1ns / 1ps
`default_nettype none
/*
* Statistics collector
*/
module stats_collect #
(
// Channel count
parameter COUNT = 8,
// Increment width (bits)
parameter INC_WIDTH = 8,
// Statistics counter increment width (bits)
parameter STAT_INC_WIDTH = 16,
// Statistics counter ID width (bits)
parameter STAT_ID_WIDTH = $clog2(COUNT),
// Statistics counter update period (cycles)
parameter UPDATE_PERIOD = 1024
)
(
input wire clk,
input wire rst,
/*
* Increment inputs
*/
input wire [INC_WIDTH*COUNT-1:0] stat_inc,
input wire [COUNT-1:0] stat_valid,
/*
* Statistics increment output
*/
output wire [STAT_INC_WIDTH-1:0] m_axis_stat_tdata,
output wire [STAT_ID_WIDTH-1:0] m_axis_stat_tid,
output wire m_axis_stat_tvalid,
input wire m_axis_stat_tready,
/*
* Control inputs
*/
input wire update
);
parameter COUNT_WIDTH = $clog2(COUNT);
parameter PERIOD_COUNT_WIDTH = $clog2(UPDATE_PERIOD-1);
parameter ACC_WIDTH = INC_WIDTH+COUNT_WIDTH+1;
localparam [1:0]
STATE_READ = 2'd0,
STATE_WRITE = 2'd1;
reg [1:0] state_reg = STATE_READ, state_next;
reg [STAT_INC_WIDTH-1:0] m_axis_stat_tdata_reg = 0, m_axis_stat_tdata_next;
reg [STAT_ID_WIDTH-1:0] m_axis_stat_tid_reg = 0, m_axis_stat_tid_next;
reg m_axis_stat_tvalid_reg = 0, m_axis_stat_tvalid_next;
reg [COUNT_WIDTH-1:0] count_reg = 0, count_next;
reg [PERIOD_COUNT_WIDTH-1:0] update_period_reg = UPDATE_PERIOD-1, update_period_next;
reg [COUNT-1:0] zero_reg = {COUNT{1'b1}}, zero_next;
reg [COUNT-1:0] update_reg = {COUNT{1'b0}}, update_next;
wire [ACC_WIDTH-1:0] acc_int[COUNT-1:0];
reg [COUNT-1:0] acc_clear;
(* ram_style = "distributed", ramstyle = "no_rw_check, mlab" *)
reg [STAT_INC_WIDTH-1:0] mem_reg[COUNT-1:0];
reg [STAT_INC_WIDTH-1:0] mem_rd_data_reg = 0;
reg mem_rd_en;
reg mem_wr_en;
reg [STAT_INC_WIDTH-1:0] mem_wr_data;
assign m_axis_stat_tdata = m_axis_stat_tdata_reg;
assign m_axis_stat_tid = m_axis_stat_tid_reg;
assign m_axis_stat_tvalid = m_axis_stat_tvalid_reg;
generate
genvar n;
for (n = 0; n < COUNT; n = n + 1) begin
reg [ACC_WIDTH-1:0] acc_reg = 0;
assign acc_int[n] = acc_reg;
always @(posedge clk) begin
if (acc_clear[n]) begin
if (stat_valid[n]) begin
acc_reg <= stat_inc[n*INC_WIDTH +: INC_WIDTH];
end else begin
acc_reg <= 0;
end
end else begin
if (stat_valid[n]) begin
acc_reg <= acc_reg + stat_inc[n*INC_WIDTH +: INC_WIDTH];
end
end
if (rst) begin
acc_reg <= 0;
end
end
end
endgenerate
always @* begin
state_next = STATE_READ;
m_axis_stat_tdata_next = m_axis_stat_tdata_reg;
m_axis_stat_tid_next = m_axis_stat_tid_reg;
m_axis_stat_tvalid_next = m_axis_stat_tvalid_reg && !m_axis_stat_tready;
count_next = count_reg;
update_period_next = update_period_reg;
zero_next = zero_reg;
update_next = update_reg;
acc_clear = {COUNT{1'b0}};
mem_rd_en = 1'b0;
mem_wr_en = 1'b0;
mem_wr_data = 0;
case (state_reg)
STATE_READ: begin
mem_rd_en = 1'b1;
state_next = STATE_WRITE;
end
STATE_WRITE: begin;
mem_wr_en = 1'b1;
acc_clear[count_reg] = 1'b1;
if (!m_axis_stat_tvalid_reg && update_reg[count_reg]) begin
update_next[count_reg] = 1'b0;
mem_wr_data = 0;
if (zero_reg[count_reg]) begin
m_axis_stat_tdata_next = acc_int[count_reg];
m_axis_stat_tid_next = count_reg;
m_axis_stat_tvalid_next = acc_int[count_reg] != 0;
end else begin
m_axis_stat_tdata_next = mem_rd_data_reg + acc_int[count_reg];
m_axis_stat_tid_next = count_reg;
m_axis_stat_tvalid_next = mem_rd_data_reg != 0 || acc_int[count_reg] != 0;
end
end else begin
if (zero_reg[count_reg]) begin
mem_wr_data = acc_int[count_reg];
end else begin
mem_wr_data = mem_rd_data_reg + acc_int[count_reg];
end
end
zero_next[count_reg] = 1'b0;
if (count_reg == COUNT-1) begin
count_next = 0;
end else begin
count_next = count_reg + 1;
end
state_next = STATE_READ;
end
endcase
if (update_period_reg == 0) begin
update_next = {COUNT{1'b1}};
update_period_next = UPDATE_PERIOD-1;
end else begin
update_period_next = update_period_reg - 1;
end
if (update) begin
update_next = {COUNT{1'b1}};
end
end
always @(posedge clk) begin
state_reg <= state_next;
m_axis_stat_tdata_reg <= m_axis_stat_tdata_next;
m_axis_stat_tid_reg <= m_axis_stat_tid_next;
m_axis_stat_tvalid_reg <= m_axis_stat_tvalid_next;
count_reg <= count_next;
update_period_reg <= update_period_next;
zero_reg <= zero_next;
update_reg <= update_next;
if (mem_wr_en) begin
mem_reg[count_reg] <= mem_wr_data;
end else if (mem_rd_en) begin
mem_rd_data_reg <= mem_reg[count_reg];
end
if (rst) begin
state_reg <= STATE_READ;
m_axis_stat_tvalid_reg <= 1'b0;
count_reg <= 0;
update_period_reg <= UPDATE_PERIOD-1;
zero_reg <= {COUNT{1'b1}};
update_reg <= {COUNT{1'b0}};
end
end
endmodule
`resetall