1
0
mirror of https://github.com/aolofsson/oh.git synced 2025-01-17 20:02:53 +08:00
oh/elink/hdl/elink.v

890 lines
36 KiB
Coq
Raw Normal View History

/*
########################################################################
DESCRIPTION
########################################################################
The "eLink" is a low latency chip to chip interface used by for communication
between Epiphany chips and FPGAs. The interface "should" achieve a peak
throughput of 8 Gbit/s in FPGAs with 24 available LVDS signal pairs.
SIGNAL | DESCRIPTION
---------------|--------------
TXO_FRAME | Packet framing signal. Rising edge signals new packet.
TXO_LCLK | A clock aligned in the center of the data eye
TXO_DATA[7:0] | Dual data rate (DDR) that transmits packet
TXI_RD_WAIT | Push back signal for read transactions
TXI_WR_WAIT | Push back signal for write transactions
A symmetrical set of signals exit on the receiver side.
The elink has a 64 bit data AXI master and 32-bit data AXI slave interface
for connecting to a standard AXI network.
PACKET SUBFIELD | DESCRIPTION
----------------|----------------
access | Indicates a valid packet
write | A write transaction. Access & ~write indicates a read.
datamode[1:0] | Datasize (00=8b,01=16b,10=32b,11=64b)
ctrlmode[3:0] | Various packet modes for the Epiphany chip
dstraddr[31:0] | Address for write, read-request, or read-respones transaction
data[31:0] | Data for write transation, return data for read response
srcaddr[31:0] | Return address for read-request, upper data for 64 bit write
More gory details:
The elink was born out of a need to connect multiple Epiphany chips together
and uses the eMesh 104 bit atomic packet structure for communication.
The eMesh atomic patcket consists of the following sub fields.
The number of bytes to be received is determined by the data of the first
valid byte (byte0) and the level of the FRAME signal. The data captured
on the rising edge of the LCLK is considered to be byte0 if the FRAME control
captured at the same cycle (rising edge) is high but was low at the rising
edge of the previous LCLK cycle. The cycle after the last byte of the
transaction (byte8 or byte12) will determine if the receiver should go into
data streaming mode based on the level of the FRAME control signal. If the
FRAME signal is low, the transaction is complete. If the FRAME control
signal stays high, the eLink goes into streaming mode, meaning that the
last byte of the previous transaction (byte8 or byte12) will be followed
by byte5 of the new transaction.
The WAIT_RD and WAIT_WR signals are used to stall transmission when a receiver
is unable to accept more transactions. The receiver will raise its WAIT output
signal on the second rising edge of LCLK input following the capturing rising
edge of the last transaction byte (byte8 or byte12) but will be ready to
accept one more full transaction (byte0 through byte8/byte12). The WAIT
signal seen by the transmitter is assumed to be of the unspecified phase
delay (while still of the LCLK clock period) and therefore has to be sampled
with the two-cycle synchronizer. Once synchronized to the transmitter's LCLK
clock domain, the WAIT control signals will prevent new transaction from
being transmitted. If the transaction is in the middle of the transmission
when the synchronized WAIT control goes high, the transmission process is to
be completed without interruption. The txo_* interface driven out from the
E16G301 uses a divided version of the core cock frequency (RXI_WE_CCLK_{P,N}).
The transmit clock is automatically aligned in the middle of the data eye
by the eLink on chip transmit logic. The receiver logic assumes the clock is
aligned at the center of the receiver data eye. The wait signals are used
to indicate to the transmit logic that no more transactions can be received
because the receiver buffer full.
########################################################################
ELINK MEMORY MAP
########################################################################
The elink has an parameter called 'ELINKID' that can be configured by
the module instantiating the elink.
REGISTER | ADDRESS | NOTES
------------| -------------|------
ESYSRESET | 0xF0000 | Soft reset
ESYSTX | 0xF0004 | Elink tranmit config
ESYSRX | 0xF0008 | Elink receiver config
ESYSCLK | 0xF000C | Clock config
ESYSCOREID | 0xF0010 | ID to drive to Epiphany chip
ESYSVERSION | 0xF0014 | Platform version
ESYSDATAIN | 0xF0018 | Direct data from elink receiver
ESYSDATAOUT | 0xF001C | Direct data for elink transmitter
ESYSDEBUG | 0xF0020 | Various debug signals
---------------------------------------------------------------------------
EMBOXLO | 0xC0004 | Lower 32 bits of 64 bit wide mail box fifo
EMBOXHI | 0xC0008 | Upper 32 bits of 64 bit wide mail box fifo
---------------------------------------------------------------------------
ESYSMMURX | 0xE0000 | Start of receiver MMU lookup table
ESYSMMUTX | 0xD0000 | Start of transmit MMU lookup table (tbd)
########################################################################
ELINK CONFIGURATION REGISTER (32bit access)
########################################################################
-------------------------------------------------------------
ESYSRESET ***Elink reset***
[0] 0 - elink active
1 - elink in reset
-------------------------------------------------------------
ESYSTX ***Elink transmitter configuration***
[0] 0 - link TX disable
1 - link TX enable
[1] 0 - normal pass through transaction mode
1 - mmu mode
[3:2] 00 - normal mode
01 - gpio drive mode
10 - reserved
11 - reserved
[7:4] Transmit control mode for eMesh
[8] AXI slave read timeout enable
-------------------------------------------------------------
ESYSRX ***Elink receiver configuration***
[0] 0 - link RX disable
1 - link RX enable
[1] 0 - normal transaction mode
1 - mmu mode
[3:2] 00 - normal mode
01 - gpio sample mode (drive rd wait pins from registers)
10 - reserved
11 - reserved
-------------------------------------------------------------
ESYSCLK ***Epiphany clock frequency setting***
[0] Enable CCLK
[1] Enable TX_LCLK
[2] CCLK PLL bypass mode (cclk is set to clkin)
[3] LCLK PLL bypass mode (lclk is set to clkin)
[7:4] CCLK PLL Divider (1<<reg)
0000 - CLKIN/1
0001 - CLKIN/2
0010 - CLKIN/4
0011 - CLKIN/8
0100 - CLKIN/16
0101 - CLKIN/32
0110 - CLKIN/64
0111 - CLKIN/128
1xxx - RESERVED
[11:8] Elink PLL Divider (1<<reg)
0000 - CLKIN/1
0001 - CLKIN/2
0010 - CLKIN/4
0011 - CLKIN/8
0100 - CLKIN/16
0101 - CLKIN/32
0110 - CLKIN/64
0111 - CLKIN/128
1xxx - RESERVED
[15:12] PLL Frequency
0000 -
0001 -
0010 -
0011 -
0100 -
0101 -
0110 -
0111 -
1000 -
1001 -
1010 -
1011 -
1100 -
1101 -
1110 -
1111 -
-------------------------------------------------------------
ESYSCOREID ***CORE ID***
[5:0] Column ID-->default at powerup/reset
[11:6] Row ID
-------------------------------------------------------------
ESYSLATFORM ***Platform ID (read only)***
[7:0] Platform model number
-------------------------------------------------------------
ESYSDATAIN ***Data on elink input pins
[7:0] rx_data[7:0]
[8] tx_frame
[9] tx_wait_rd
[10] tx_wait_wr
-------------------------------------------------------------
ESYSDATAOUT ***Data on eLink output pins
[7:0] tx_data[7:0]
[8] tx_frame
[9] rx_wait_rd
[10] rx_wait_wr
-------------------------------------------------------------
ESYSDEBUG ***Various debug signals from elink
[31] embox_not_empty
//RX signals
[30] emesh_rx_rd_wait
[29] emesh_rx_wr_wait
[28] esaxi_emrr_rd_en
[27] emrr_full
[26] emrr_progfull
[25] emrr_wr_en
[24] emaxi_emrq_rd_en
[23] emrq_progfull
[22] emrq_wr_en
[21] emaxi_emwr_rd_en
[20] emwr_progfull
[19] emwr_wr_en (rx)
//TX signals
[18] e_tx_rd_wait
[17] e_tx_wr_wait
[16] emrr_rd_en
[15] emaxi_emrr_prog_full
[14] emaxi_emrr_wr_en
[13] emrq_rd_en
[12 esaxi_emrq_prog_full
[11] esaxi_emrq_wr_en
[10] emwr_rd_en
[9] esaxi_emwr_prog_full
[8] esaxi_emwr_wr_en
##########Sticky signals below#############
[7] reserved
[6] emrr_full (rx)
[5] emrq_full (rx)
[4] emwr_full (rx)
[3] emaxi_emrr_full (tx)
[2] esaxi_emrq_full (tx)
[1] esaxi_emwr_full (tx)
[0] embox_full (mailbox)
########################################################################
*/
module elink(/*AUTOARG*/
// Outputs
colid, rowid, chip_resetb, cclk_p, cclk_n, rxo_wr_wait_p,
rxo_wr_wait_n, rxo_rd_wait_p, rxo_rd_wait_n, txo_lclk_p,
txo_lclk_n, txo_frame_p, txo_frame_n, txo_data_p, txo_data_n,
2015-04-14 11:44:31 -04:00
m_axi_araddr, m_axi_arburst, m_axi_arcache, m_axi_arlen,
m_axi_arprot, m_axi_arqos, m_axi_arsize, m_axi_arvalid,
m_axi_awaddr, m_axi_awburst, m_axi_awcache, m_axi_awlen,
m_axi_awprot, m_axi_awqos, m_axi_awsize, m_axi_awvalid,
m_axi_bready, m_axi_rready, m_axi_wdata, m_axi_wlast, m_axi_wstrb,
m_axi_wvalid, s_axi_arready, s_axi_awready, s_axi_bresp,
s_axi_bvalid, s_axi_rdata, s_axi_rlast, s_axi_rresp, s_axi_rvalid,
s_axi_wready, embox_not_empty, embox_full,
// Inputs
hard_reset, clkin, bypass_clocks, rxi_lclk_p, rxi_lclk_n,
rxi_frame_p, rxi_frame_n, rxi_data_p, rxi_data_n, txi_wr_wait_p,
txi_wr_wait_n, txi_rd_wait_p, txi_rd_wait_n, m_axi_aclk,
m_axi_aresetn, m_axi_arready, m_axi_awready, m_axi_bresp,
m_axi_bvalid, m_axi_rdata, m_axi_rlast, m_axi_rresp, m_axi_rvalid,
m_axi_wready, s_axi_aclk, s_axi_aresetn, s_axi_araddr,
s_axi_arburst, s_axi_arcache, s_axi_arlen, s_axi_arprot,
s_axi_arqos, s_axi_arsize, s_axi_arvalid, s_axi_awaddr,
s_axi_awburst, s_axi_awcache, s_axi_awlen, s_axi_awprot,
s_axi_awqos, s_axi_awsize, s_axi_awvalid, s_axi_bready,
s_axi_rready, s_axi_wdata, s_axi_wlast, s_axi_wstrb, s_axi_wvalid
);
parameter DEF_COREID = 12'h810;
parameter AW = 32;
parameter DW = 32;
parameter IDW = 32;
parameter RFAW = 13;
parameter MW = 44;
parameter INC_PLL = 1; //include pll
parameter INC_SPI = 1; //include spi block
parameter ELINKID = 12'h810; //elink ID (used for registers)
/****************************/
/*CLK AND RESET */
/****************************/
input hard_reset; // active high synhcronous hardware reset
input clkin; // clock for pll
input [2:0] bypass_clocks; // bypass clocks for elinks w/o pll
// "advanced", tie to zero if not used
/********************************/
/*EPIPHANY INTERFACE (I/O PINS) */
/********************************/
//Basic
output [3:0] colid; //epiphany colid
output [3:0] rowid; //epiphany rowid
output chip_resetb; //chip reset for Epiphany (active low)
output cclk_p, cclk_n; //high speed clock (1GHz) to Epiphany
//Receiver
input rxi_lclk_p, rxi_lclk_n; //link rx clock input
input rxi_frame_p, rxi_frame_n; //link rx frame signal
input [7:0] rxi_data_p, rxi_data_n; //link rx data
output rxo_wr_wait_p,rxo_wr_wait_n; //link rx write pushback output
output rxo_rd_wait_p,rxo_rd_wait_n; //link rx read pushback output
//Transmitter
output txo_lclk_p, txo_lclk_n; //link tx clock output
output txo_frame_p, txo_frame_n; //link tx frame signal
output [7:0] txo_data_p, txo_data_n; //link tx data
input txi_wr_wait_p,txi_wr_wait_n; //link tx write pushback input
input txi_rd_wait_p,txi_rd_wait_n; //link tx read pushback input
/*****************************/
/*AXI master interface */
/*****************************/
//Clock and reset
input m_axi_aclk; //axi master clock
input m_axi_aresetn; //axi master reset (active low)
//Read address channel
output [31:0] m_axi_araddr; //read address
output [1:0] m_axi_arburst; //burst type
output [3:0] m_axi_arcache; //memory type
output [7:0] m_axi_arlen; //burst length (number of data transfers)
output [2:0] m_axi_arprot; //protection type
output [3:0] m_axi_arqos; //quality of service (setting?)
input m_axi_arready; //read ready
output [2:0] m_axi_arsize; //burst size (the size of each transfer)
output m_axi_arvalid; //write address valid
//Write address channel
output [31:0] m_axi_awaddr;
output [1:0] m_axi_awburst;
output [3:0] m_axi_awcache;
output [7:0] m_axi_awlen;
output [2:0] m_axi_awprot;
output [3:0] m_axi_awqos;
input m_axi_awready;
output [2:0] m_axi_awsize;
output m_axi_awvalid;
//Write response channel
output m_axi_bready;
input [1:0] m_axi_bresp;
input m_axi_bvalid;
//Read data channel
input [63:0] m_axi_rdata;
input m_axi_rlast; //indicates last transfer of a burst
output m_axi_rready; //read ready signal
input [1:0] m_axi_rresp;
input m_axi_rvalid;
//Write data channel
output [63:0] m_axi_wdata;
output m_axi_wlast; //indicates last transfer of a burs
input m_axi_wready; //response ready
output [7:0] m_axi_wstrb;
output m_axi_wvalid;
/*****************************/
/*AXI slave interface */
/*****************************/
//Clock and reset
input s_axi_aclk;
input s_axi_aresetn;
//Read address channel
input [29:0] s_axi_araddr;
input [1:0] s_axi_arburst;
input [3:0] s_axi_arcache;
input [7:0] s_axi_arlen;
input [2:0] s_axi_arprot;
input [3:0] s_axi_arqos;
output s_axi_arready;
input [2:0] s_axi_arsize;
input s_axi_arvalid;
//Write address channel
input [29:0] s_axi_awaddr;
input [1:0] s_axi_awburst;
input [3:0] s_axi_awcache;
input [7:0] s_axi_awlen;
input [2:0] s_axi_awprot;
input [3:0] s_axi_awqos;
output s_axi_awready;
input [2:0] s_axi_awsize;
input s_axi_awvalid;
//Buffered write response channel
input s_axi_bready;
output [1:0] s_axi_bresp;
output s_axi_bvalid;
//Read channel
output [31:0] s_axi_rdata;
output s_axi_rlast;
input s_axi_rready;
output [1:0] s_axi_rresp;
output s_axi_rvalid;
//Write channel
input [31:0] s_axi_wdata;
input s_axi_wlast;
output s_axi_wready;
input [3:0] s_axi_wstrb;
input s_axi_wvalid;
/*****************************/
/*MAILBOX (interrupts) */
/*****************************/
output embox_not_empty;
output embox_full;
/*#############################################*/
/* END OF BLOCK INTERFACE */
/*#############################################*/
/*AUTOINPUT*/
/*AUTOOUTPUT*/
//wires
wire [31:0] mi_rd_data;
wire [31:0] mi_dout_ecfg;
wire [31:0] mi_dout_embox;
/*AUTOWIRE*/
// Beginning of automatic wires (for undeclared instantiated-module outputs)
wire [15:0] ecfg_clk_settings; // From ecfg of ecfg.v
wire [11:0] ecfg_coreid; // From ecfg of ecfg.v
wire [10:0] ecfg_dataout; // From ecfg of ecfg.v
wire [8:0] ecfg_rx_datain; // From erx of erx.v
wire [15:0] ecfg_rx_debug; // From erx of erx.v
wire ecfg_rx_enable; // From ecfg of ecfg.v
wire ecfg_rx_gpio_enable; // From ecfg of ecfg.v
wire ecfg_rx_mmu_enable; // From ecfg of ecfg.v
wire ecfg_timeout_enable; // From ecfg of ecfg.v
wire [3:0] ecfg_tx_ctrlmode; // From ecfg of ecfg.v
wire [1:0] ecfg_tx_datain; // From etx of etx.v
wire [15:0] ecfg_tx_debug; // From etx of etx.v
wire ecfg_tx_enable; // From ecfg of ecfg.v
wire ecfg_tx_gpio_enable; // From ecfg of ecfg.v
wire ecfg_tx_mmu_enable; // From ecfg of ecfg.v
wire emaxi_emrq_access; // From erx of erx.v
wire [3:0] emaxi_emrq_ctrlmode; // From erx of erx.v
wire [31:0] emaxi_emrq_data; // From erx of erx.v
wire [1:0] emaxi_emrq_datamode; // From erx of erx.v
wire [31:0] emaxi_emrq_dstaddr; // From erx of erx.v
wire emaxi_emrq_rd_en; // From emaxi of emaxi.v
wire [31:0] emaxi_emrq_srcaddr; // From erx of erx.v
wire emaxi_emrq_write; // From erx of erx.v
wire emaxi_emrr_access; // From emaxi of emaxi.v
wire [3:0] emaxi_emrr_ctrlmode; // From emaxi of emaxi.v
wire [31:0] emaxi_emrr_data; // From emaxi of emaxi.v
wire [1:0] emaxi_emrr_datamode; // From emaxi of emaxi.v
wire [31:0] emaxi_emrr_dstaddr; // From emaxi of emaxi.v
wire emaxi_emrr_progfull; // From etx of etx.v
wire [31:0] emaxi_emrr_srcaddr; // From emaxi of emaxi.v
wire emaxi_emrr_write; // From emaxi of emaxi.v
wire emaxi_emwr_access; // From erx of erx.v
wire [3:0] emaxi_emwr_ctrlmode; // From erx of erx.v
wire [31:0] emaxi_emwr_data; // From erx of erx.v
wire [1:0] emaxi_emwr_datamode; // From erx of erx.v
wire [31:0] emaxi_emwr_dstaddr; // From erx of erx.v
wire emaxi_emwr_rd_en; // From emaxi of emaxi.v
wire [31:0] emaxi_emwr_srcaddr; // From erx of erx.v
wire emaxi_emwr_write; // From erx of erx.v
wire esaxi_emrq_access; // From esaxi of esaxi.v
wire [3:0] esaxi_emrq_ctrlmode; // From esaxi of esaxi.v
wire [31:0] esaxi_emrq_data; // From esaxi of esaxi.v
wire [1:0] esaxi_emrq_datamode; // From esaxi of esaxi.v
wire [31:0] esaxi_emrq_dstaddr; // From esaxi of esaxi.v
wire esaxi_emrq_progfull; // From etx of etx.v
wire [31:0] esaxi_emrq_srcaddr; // From esaxi of esaxi.v
wire esaxi_emrq_write; // From esaxi of esaxi.v
wire esaxi_emrr_access; // From erx of erx.v
wire [31:0] esaxi_emrr_data; // From erx of erx.v
wire esaxi_emrr_rd_en; // From esaxi of esaxi.v
wire esaxi_emwr_access; // From esaxi of esaxi.v
wire [3:0] esaxi_emwr_ctrlmode; // From esaxi of esaxi.v
wire [31:0] esaxi_emwr_data; // From esaxi of esaxi.v
wire [1:0] esaxi_emwr_datamode; // From esaxi of esaxi.v
wire [31:0] esaxi_emwr_dstaddr; // From esaxi of esaxi.v
wire esaxi_emwr_progfull; // From etx of etx.v
wire [31:0] esaxi_emwr_srcaddr; // From esaxi of esaxi.v
wire esaxi_emwr_write; // From esaxi of esaxi.v
wire [19:0] mi_addr; // From esaxi of esaxi.v
wire mi_clk; // From esaxi of esaxi.v
wire [31:0] mi_din; // From esaxi of esaxi.v
wire [31:0] mi_ecfg_dout; // From ecfg of ecfg.v
wire mi_ecfg_sel; // From esaxi of esaxi.v
wire [DW-1:0] mi_embox_dout; // From embox of embox.v
wire mi_embox_sel; // From esaxi of esaxi.v
wire [31:0] mi_rx_emmu_dout; // From erx of erx.v
wire mi_rx_emmu_sel; // From esaxi of esaxi.v
wire [31:0] mi_tx_emmu_dout; // From etx of etx.v
wire mi_tx_emmu_sel; // From esaxi of esaxi.v
wire mi_we; // From esaxi of esaxi.v
wire reset; // From ereset of ereset.v
wire soft_reset; // From ecfg of ecfg.v
wire tx_lclk; // From eclocks of eclocks.v
wire tx_lclk_out; // From eclocks of eclocks.v
wire tx_lclk_par; // From eclocks of eclocks.v
// End of automatics
/***********************************************************/
/*AXI MASTER */
/***********************************************************/
/*emaxi AUTO_TEMPLATE (
// Outputs
.m00_\(.*\) (m_\1[]),
.em\(.*\) (emaxi_em\1[]),
);
*/
emaxi emaxi(
/*AUTOINST*/
// Outputs
.emwr_rd_en (emaxi_emwr_rd_en), // Templated
.emrq_rd_en (emaxi_emrq_rd_en), // Templated
.emrr_access (emaxi_emrr_access), // Templated
.emrr_write (emaxi_emrr_write), // Templated
.emrr_datamode (emaxi_emrr_datamode[1:0]), // Templated
.emrr_ctrlmode (emaxi_emrr_ctrlmode[3:0]), // Templated
.emrr_dstaddr (emaxi_emrr_dstaddr[31:0]), // Templated
.emrr_data (emaxi_emrr_data[31:0]), // Templated
.emrr_srcaddr (emaxi_emrr_srcaddr[31:0]), // Templated
.m_axi_awaddr (m_axi_awaddr[31:0]),
.m_axi_awlen (m_axi_awlen[7:0]),
.m_axi_awsize (m_axi_awsize[2:0]),
.m_axi_awburst (m_axi_awburst[1:0]),
.m_axi_awcache (m_axi_awcache[3:0]),
.m_axi_awprot (m_axi_awprot[2:0]),
.m_axi_awqos (m_axi_awqos[3:0]),
.m_axi_awvalid (m_axi_awvalid),
.m_axi_wdata (m_axi_wdata[63:0]),
.m_axi_wstrb (m_axi_wstrb[7:0]),
.m_axi_wlast (m_axi_wlast),
.m_axi_wvalid (m_axi_wvalid),
.m_axi_bready (m_axi_bready),
.m_axi_araddr (m_axi_araddr[31:0]),
.m_axi_arlen (m_axi_arlen[7:0]),
.m_axi_arsize (m_axi_arsize[2:0]),
.m_axi_arburst (m_axi_arburst[1:0]),
.m_axi_arcache (m_axi_arcache[3:0]),
.m_axi_arprot (m_axi_arprot[2:0]),
.m_axi_arqos (m_axi_arqos[3:0]),
.m_axi_arvalid (m_axi_arvalid),
.m_axi_rready (m_axi_rready),
// Inputs
.emwr_access (emaxi_emwr_access), // Templated
.emwr_write (emaxi_emwr_write), // Templated
.emwr_datamode (emaxi_emwr_datamode[1:0]), // Templated
.emwr_ctrlmode (emaxi_emwr_ctrlmode[3:0]), // Templated
.emwr_dstaddr (emaxi_emwr_dstaddr[31:0]), // Templated
.emwr_data (emaxi_emwr_data[31:0]), // Templated
.emwr_srcaddr (emaxi_emwr_srcaddr[31:0]), // Templated
.emrq_access (emaxi_emrq_access), // Templated
.emrq_write (emaxi_emrq_write), // Templated
.emrq_datamode (emaxi_emrq_datamode[1:0]), // Templated
.emrq_ctrlmode (emaxi_emrq_ctrlmode[3:0]), // Templated
.emrq_dstaddr (emaxi_emrq_dstaddr[31:0]), // Templated
.emrq_data (emaxi_emrq_data[31:0]), // Templated
.emrq_srcaddr (emaxi_emrq_srcaddr[31:0]), // Templated
.emrr_progfull (emaxi_emrr_progfull), // Templated
.m_axi_aclk (m_axi_aclk),
.m_axi_aresetn (m_axi_aresetn),
.m_axi_awready (m_axi_awready),
.m_axi_wready (m_axi_wready),
.m_axi_bresp (m_axi_bresp[1:0]),
.m_axi_bvalid (m_axi_bvalid),
.m_axi_arready (m_axi_arready),
.m_axi_rdata (m_axi_rdata[63:0]),
.m_axi_rresp (m_axi_rresp[1:0]),
.m_axi_rlast (m_axi_rlast),
.m_axi_rvalid (m_axi_rvalid));
/***********************************************************/
/*AXI SLAVE */
/***********************************************************/
/*esaxi AUTO_TEMPLATE (
// Outputs
.s00_\(.*\) (s_\1[]),
.emwr_\(.*\) (esaxi_emwr_\1[]),
.emrq_\(.*\) (esaxi_emrq_\1[]),
.emrr_\(.*\) (esaxi_emrr_\1[]),
);
*/
esaxi esaxi(
/*AUTOINST*/
// Outputs
.emwr_access (esaxi_emwr_access), // Templated
.emwr_write (esaxi_emwr_write), // Templated
.emwr_datamode (esaxi_emwr_datamode[1:0]), // Templated
.emwr_ctrlmode (esaxi_emwr_ctrlmode[3:0]), // Templated
.emwr_dstaddr (esaxi_emwr_dstaddr[31:0]), // Templated
.emwr_data (esaxi_emwr_data[31:0]), // Templated
.emwr_srcaddr (esaxi_emwr_srcaddr[31:0]), // Templated
.emrq_access (esaxi_emrq_access), // Templated
.emrq_write (esaxi_emrq_write), // Templated
.emrq_datamode (esaxi_emrq_datamode[1:0]), // Templated
.emrq_ctrlmode (esaxi_emrq_ctrlmode[3:0]), // Templated
.emrq_dstaddr (esaxi_emrq_dstaddr[31:0]), // Templated
.emrq_data (esaxi_emrq_data[31:0]), // Templated
.emrq_srcaddr (esaxi_emrq_srcaddr[31:0]), // Templated
.emrr_rd_en (esaxi_emrr_rd_en), // Templated
.mi_clk (mi_clk),
.mi_rx_emmu_sel (mi_rx_emmu_sel),
.mi_tx_emmu_sel (mi_tx_emmu_sel),
.mi_ecfg_sel (mi_ecfg_sel),
.mi_embox_sel (mi_embox_sel),
.mi_we (mi_we),
.mi_addr (mi_addr[19:0]),
.mi_din (mi_din[31:0]),
.s_axi_arready (s_axi_arready),
.s_axi_awready (s_axi_awready),
.s_axi_bresp (s_axi_bresp[1:0]),
.s_axi_bvalid (s_axi_bvalid),
.s_axi_rdata (s_axi_rdata[31:0]),
.s_axi_rlast (s_axi_rlast),
.s_axi_rresp (s_axi_rresp[1:0]),
.s_axi_rvalid (s_axi_rvalid),
.s_axi_wready (s_axi_wready),
// Inputs
.emwr_progfull (esaxi_emwr_progfull), // Templated
.emrq_progfull (esaxi_emrq_progfull), // Templated
.emrr_data (esaxi_emrr_data[31:0]), // Templated
.emrr_access (esaxi_emrr_access), // Templated
.mi_ecfg_dout (mi_ecfg_dout[31:0]),
.mi_tx_emmu_dout (mi_tx_emmu_dout[31:0]),
.mi_rx_emmu_dout (mi_rx_emmu_dout[31:0]),
.mi_embox_dout (mi_embox_dout[31:0]),
.ecfg_tx_ctrlmode (ecfg_tx_ctrlmode[3:0]),
.ecfg_coreid (ecfg_coreid[11:0]),
.ecfg_timeout_enable (ecfg_timeout_enable),
.s_axi_aclk (s_axi_aclk),
.s_axi_aresetn (s_axi_aresetn),
.s_axi_araddr (s_axi_araddr[29:0]),
.s_axi_arburst (s_axi_arburst[1:0]),
.s_axi_arcache (s_axi_arcache[3:0]),
.s_axi_arlen (s_axi_arlen[7:0]),
.s_axi_arprot (s_axi_arprot[2:0]),
.s_axi_arqos (s_axi_arqos[3:0]),
.s_axi_arsize (s_axi_arsize[2:0]),
.s_axi_arvalid (s_axi_arvalid),
.s_axi_awaddr (s_axi_awaddr[29:0]),
.s_axi_awburst (s_axi_awburst[1:0]),
.s_axi_awcache (s_axi_awcache[3:0]),
.s_axi_awlen (s_axi_awlen[7:0]),
.s_axi_awprot (s_axi_awprot[2:0]),
.s_axi_awqos (s_axi_awqos[3:0]),
.s_axi_awsize (s_axi_awsize[2:0]),
.s_axi_awvalid (s_axi_awvalid),
.s_axi_bready (s_axi_bready),
.s_axi_rready (s_axi_rready),
.s_axi_wdata (s_axi_wdata[31:0]),
.s_axi_wlast (s_axi_wlast),
.s_axi_wstrb (s_axi_wstrb[3:0]),
.s_axi_wvalid (s_axi_wvalid));
/***********************************************************/
/*RECEIVER */
/***********************************************************/
/*erx AUTO_TEMPLATE (
.mi_dout (mi_rx_emmu_dout[]),
.mi_en (mi_rx_emmu_sel),
.emwr_\(.*\) (emaxi_emwr_\1[]),
.emrq_\(.*\) (emaxi_emrq_\1[]),
.emrr_\(.*\) (esaxi_emrr_\1[]),
);
*/
erx erx(
/*AUTOINST*/
// Outputs
.ecfg_rx_debug (ecfg_rx_debug[15:0]),
.ecfg_rx_datain (ecfg_rx_datain[8:0]),
.mi_dout (mi_rx_emmu_dout[31:0]), // Templated
.emwr_access (emaxi_emwr_access), // Templated
.emwr_write (emaxi_emwr_write), // Templated
.emwr_datamode (emaxi_emwr_datamode[1:0]), // Templated
.emwr_ctrlmode (emaxi_emwr_ctrlmode[3:0]), // Templated
.emwr_dstaddr (emaxi_emwr_dstaddr[31:0]), // Templated
.emwr_data (emaxi_emwr_data[31:0]), // Templated
.emwr_srcaddr (emaxi_emwr_srcaddr[31:0]), // Templated
.emrq_access (emaxi_emrq_access), // Templated
.emrq_write (emaxi_emrq_write), // Templated
.emrq_datamode (emaxi_emrq_datamode[1:0]), // Templated
.emrq_ctrlmode (emaxi_emrq_ctrlmode[3:0]), // Templated
.emrq_dstaddr (emaxi_emrq_dstaddr[31:0]), // Templated
.emrq_data (emaxi_emrq_data[31:0]), // Templated
.emrq_srcaddr (emaxi_emrq_srcaddr[31:0]), // Templated
.emrr_access (esaxi_emrr_access), // Templated
.emrr_data (esaxi_emrr_data[31:0]), // Templated
.rxo_wr_wait_p (rxo_wr_wait_p),
.rxo_wr_wait_n (rxo_wr_wait_n),
.rxo_rd_wait_p (rxo_rd_wait_p),
.rxo_rd_wait_n (rxo_rd_wait_n),
// Inputs
.reset (reset),
.s_axi_aclk (s_axi_aclk),
.m_axi_aclk (m_axi_aclk),
.ecfg_rx_enable (ecfg_rx_enable),
.ecfg_rx_mmu_enable (ecfg_rx_mmu_enable),
.ecfg_rx_gpio_enable (ecfg_rx_gpio_enable),
.ecfg_dataout (ecfg_dataout[1:0]),
.mi_clk (mi_clk),
.mi_en (mi_rx_emmu_sel), // Templated
.mi_we (mi_we),
.mi_addr (mi_addr[15:0]),
.mi_din (mi_din[31:0]),
.emwr_rd_en (emaxi_emwr_rd_en), // Templated
.emrq_rd_en (emaxi_emrq_rd_en), // Templated
.emrr_rd_en (esaxi_emrr_rd_en), // Templated
.rxi_lclk_p (rxi_lclk_p),
.rxi_lclk_n (rxi_lclk_n),
.rxi_frame_p (rxi_frame_p),
.rxi_frame_n (rxi_frame_n),
.rxi_data_p (rxi_data_p[7:0]),
.rxi_data_n (rxi_data_n[7:0]));
/***********************************************************/
/*TRANSMITTER */
/***********************************************************/
/*etx AUTO_TEMPLATE (
.mi_dout (mi_tx_emmu_dout[]),
.mi_en (mi_tx_emmu_sel),
.emwr_\(.*\) (esaxi_emwr_\1[]),
.emrq_\(.*\) (esaxi_emrq_\1[]),
.emrr_\(.*\) (emaxi_emrr_\1[]),
);
*/
etx etx(
/*AUTOINST*/
// Outputs
.ecfg_tx_datain (ecfg_tx_datain[1:0]),
.ecfg_tx_debug (ecfg_tx_debug[15:0]),
.emrq_progfull (esaxi_emrq_progfull), // Templated
.emwr_progfull (esaxi_emwr_progfull), // Templated
.emrr_progfull (emaxi_emrr_progfull), // Templated
.txo_lclk_p (txo_lclk_p),
.txo_lclk_n (txo_lclk_n),
.txo_frame_p (txo_frame_p),
.txo_frame_n (txo_frame_n),
.txo_data_p (txo_data_p[7:0]),
.txo_data_n (txo_data_n[7:0]),
.mi_dout (mi_tx_emmu_dout[31:0]), // Templated
// Inputs
.reset (reset),
.tx_lclk (tx_lclk),
.tx_lclk_out (tx_lclk_out),
.tx_lclk_par (tx_lclk_par),
.s_axi_aclk (s_axi_aclk),
.m_axi_aclk (m_axi_aclk),
.ecfg_tx_enable (ecfg_tx_enable),
.ecfg_tx_gpio_enable (ecfg_tx_gpio_enable),
.ecfg_tx_mmu_enable (ecfg_tx_mmu_enable),
.ecfg_dataout (ecfg_dataout[8:0]),
.emrq_access (esaxi_emrq_access), // Templated
.emrq_write (esaxi_emrq_write), // Templated
.emrq_datamode (esaxi_emrq_datamode[1:0]), // Templated
.emrq_ctrlmode (esaxi_emrq_ctrlmode[3:0]), // Templated
.emrq_dstaddr (esaxi_emrq_dstaddr[31:0]), // Templated
.emrq_data (esaxi_emrq_data[31:0]), // Templated
.emrq_srcaddr (esaxi_emrq_srcaddr[31:0]), // Templated
.emwr_access (esaxi_emwr_access), // Templated
.emwr_write (esaxi_emwr_write), // Templated
.emwr_datamode (esaxi_emwr_datamode[1:0]), // Templated
.emwr_ctrlmode (esaxi_emwr_ctrlmode[3:0]), // Templated
.emwr_dstaddr (esaxi_emwr_dstaddr[31:0]), // Templated
.emwr_data (esaxi_emwr_data[31:0]), // Templated
.emwr_srcaddr (esaxi_emwr_srcaddr[31:0]), // Templated
.emrr_access (emaxi_emrr_access), // Templated
.emrr_write (emaxi_emrr_write), // Templated
.emrr_datamode (emaxi_emrr_datamode[1:0]), // Templated
.emrr_ctrlmode (emaxi_emrr_ctrlmode[3:0]), // Templated
.emrr_dstaddr (emaxi_emrr_dstaddr[31:0]), // Templated
.emrr_data (emaxi_emrr_data[31:0]), // Templated
.emrr_srcaddr (emaxi_emrr_srcaddr[31:0]), // Templated
.txi_wr_wait_p (txi_wr_wait_p),
.txi_wr_wait_n (txi_wr_wait_n),
.txi_rd_wait_p (txi_rd_wait_p),
.txi_rd_wait_n (txi_rd_wait_n),
.mi_clk (mi_clk),
.mi_en (mi_tx_emmu_sel), // Templated
.mi_we (mi_we),
.mi_addr (mi_addr[15:0]),
.mi_din (mi_din[31:0]));
/***********************************************************/
/*ELINK CONFIGURATION REGISTERES */
/***********************************************************/
/*ecfg AUTO_TEMPLATE (
.mi_dout (mi_ecfg_dout[]),
.mi_en (mi_ecfg_sel),
.ecfg_reset (reset),
.clk (mi_clk),
);
*/
ecfg ecfg(
/*AUTOINST*/
// Outputs
.soft_reset (soft_reset),
.mi_dout (mi_ecfg_dout[31:0]), // Templated
.ecfg_tx_enable (ecfg_tx_enable),
.ecfg_tx_mmu_enable (ecfg_tx_mmu_enable),
.ecfg_tx_gpio_enable (ecfg_tx_gpio_enable),
.ecfg_tx_ctrlmode (ecfg_tx_ctrlmode[3:0]),
.ecfg_timeout_enable (ecfg_timeout_enable),
.ecfg_rx_enable (ecfg_rx_enable),
.ecfg_rx_mmu_enable (ecfg_rx_mmu_enable),
.ecfg_rx_gpio_enable (ecfg_rx_gpio_enable),
.ecfg_clk_settings (ecfg_clk_settings[15:0]),
.ecfg_coreid (ecfg_coreid[11:0]),
.ecfg_dataout (ecfg_dataout[10:0]),
.embox_not_empty (embox_not_empty),
.embox_full (embox_full),
// Inputs
.hard_reset (hard_reset),
.mi_clk (mi_clk),
.mi_en (mi_ecfg_sel), // Templated
.mi_we (mi_we),
.mi_addr (mi_addr[19:0]),
.mi_din (mi_din[31:0]),
.ecfg_rx_datain (ecfg_rx_datain[8:0]),
.ecfg_tx_datain (ecfg_tx_datain[1:0]),
.ecfg_tx_debug (ecfg_tx_debug[15:0]),
.ecfg_rx_debug (ecfg_rx_debug[15:0]));
/***********************************************************/
/*GENERAL PURPOSE MAILBOX */
/***********************************************************/
/*embox AUTO_TEMPLATE (
.mi_dout (mi_embox_dout[]),
.mi_en (mi_embox_sel),
);
*/
embox embox(.clk (s_axi_aclk),
/*AUTOINST*/
// Outputs
.mi_dout (mi_embox_dout[DW-1:0]), // Templated
.embox_full (embox_full),
.embox_not_empty (embox_not_empty),
// Inputs
.reset (reset),
.mi_en (mi_embox_sel), // Templated
.mi_we (mi_we),
.mi_addr (mi_addr[19:0]),
.mi_din (mi_din[DW-1:0]));
/***********************************************************/
/*RESET CIRCUITRY */
/***********************************************************/
ereset ereset (/*AUTOINST*/
// Outputs
.reset (reset),
.chip_resetb (chip_resetb),
// Inputs
.hard_reset (hard_reset),
.soft_reset (soft_reset));
/***********************************************************/
/*CLOCKS */
/***********************************************************/
eclocks eclocks (
/*AUTOINST*/
// Outputs
.cclk_p (cclk_p),
.cclk_n (cclk_n),
.tx_lclk (tx_lclk),
.tx_lclk_out (tx_lclk_out),
.tx_lclk_par (tx_lclk_par),
// Inputs
.clkin (clkin),
.hard_reset (hard_reset),
.ecfg_clk_settings (ecfg_clk_settings[15:0]),
.bypass_clocks (bypass_clocks[2:0]));
endmodule // elink
// Local Variables:
// verilog-library-directories:("." "../../embox/hdl" "../../erx/hdl" "../../etx/hdl" "../../axi/hdl" "../../ecfg/hdl" "../../eclock/hdl")
// End:
/*
Copyright (C) 2014 Adapteva, Inc.
Contributed by Andreas Olofsson <andreas@adapteva.com>
Contributed by Fred Huettig <fred@adapteva.com>
Contributed by Roman Trogan <roman@adapteva.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.This program is distributed in the hope
that it will be useful,but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details. You should have received a copy
of the GNU General Public License along with this program (see the file
COPYING). If not, see <http://www.gnu.org/licenses/>.
*/