/* ######################################################################## Epiphany eLink AXI Master Module ######################################################################## NOTES: --write channels: write address, write data, write response --read channels: read address, read data channel --'valid' source signal used to show valid address,data,control is available --'ready' destination ready signal indicates readyness to accept information --'last' signal indicates the transfer of final data item --read and write have separate address channels --read data channel carries read data from slave to master --write channel includes a byte lane strobe signal for every eight data bits --there is no acknowledge on write, treated as buffered --channels are unidirectional --valid is asserted uncondotionally --ready occurs cycle after valid --there can be no combinatorial path between input and output of interface --destination is permitted to wait for valud before asserting READY --source is not allowed to wait for READY to assert VALID --AWVALID must remain asserted until the rising clock edge after slave asserts AWREADY?? --The default state of AWREADY can be either HIGH or LOW. This specification recommends a default state of HIGH. --During a write burst, the master can assert the WVALID signal only when it drives valid write data. --The default state of WREADY can be HIGH, but only if the slave can always accept write data in a single cycle. --The master must assert the WLAST signal while it is driving the final write transfer in the burst. --_aw=write address channel --_ar=read address channel --_r=read data channel --_w=write data channel --_b=write response channel */ module emaxi(/*autoarg*/ // Outputs rxwr_wait, rxrd_wait, txrr_access, txrr_packet, m_axi_awid, m_axi_awaddr, m_axi_awlen, m_axi_awsize, m_axi_awburst, m_axi_awlock, m_axi_awcache, m_axi_awprot, m_axi_awqos, m_axi_awvalid, m_axi_wid, m_axi_wdata, m_axi_wstrb, m_axi_wlast, m_axi_wvalid, m_axi_bready, m_axi_arid, m_axi_araddr, m_axi_arlen, m_axi_arsize, m_axi_arburst, m_axi_arlock, m_axi_arcache, m_axi_arprot, m_axi_arqos, m_axi_arvalid, m_axi_rready, // Inputs rxwr_access, rxwr_packet, rxrd_access, rxrd_packet, txrr_wait, m_axi_aclk, m_axi_aresetn, m_axi_awready, m_axi_wready, m_axi_bid, m_axi_bresp, m_axi_bvalid, m_axi_arready, m_axi_rid, m_axi_rdata, m_axi_rresp, m_axi_rlast, m_axi_rvalid ); parameter M_IDW = 12; parameter PW = 104; parameter AW = 32; parameter DW = 32; //######################## //ELINK INTERFACE //######################## //Write request from erx input rxwr_access; input [PW-1:0] rxwr_packet; output rxwr_wait; //Read request from erx input rxrd_access; input [PW-1:0] rxrd_packet; output rxrd_wait; //Read respoonse for etx output txrr_access; output [PW-1:0] txrr_packet; input txrr_wait; //######################## //AXI MASTER INTERFACE //######################## input m_axi_aclk; // global clock signal. input m_axi_aresetn; // global reset singal. //Write address channel output [M_IDW-1:0] m_axi_awid; // write address ID output [31 : 0] m_axi_awaddr; // master interface write address output [7 : 0] m_axi_awlen; // burst length. output [2 : 0] m_axi_awsize; // burst size. output [1 : 0] m_axi_awburst; // burst type. output [1 : 0] m_axi_awlock; // lock type output [3 : 0] m_axi_awcache; // memory type. output [2 : 0] m_axi_awprot; // protection type. output [3 : 0] m_axi_awqos; // quality of service output m_axi_awvalid; // write address valid input m_axi_awready; // write address ready //Write data channel output [M_IDW-1:0] m_axi_wid; output [63 : 0] m_axi_wdata; // master interface write data. output [7 : 0] m_axi_wstrb; // byte write strobes output m_axi_wlast; // indicates last transfer in a write burst. output m_axi_wvalid; // indicates data is ready to go input m_axi_wready; // indicates that the slave is ready for data //Write response channel input [M_IDW-1:0] m_axi_bid; input [1 : 0] m_axi_bresp; // status of the write transaction. input m_axi_bvalid; // channel is signaling a valid write response output m_axi_bready; // master can accept write response. //Read address channel output [M_IDW-1:0] m_axi_arid; // read address ID output [31 : 0] m_axi_araddr; // initial address of a read burst output [7 : 0] m_axi_arlen; // burst length output [2 : 0] m_axi_arsize; // burst size output [1 : 0] m_axi_arburst; // burst type output [1 : 0] m_axi_arlock; //lock type output [3 : 0] m_axi_arcache; // memory type output [2 : 0] m_axi_arprot; // protection type output [3 : 0] m_axi_arqos; // output m_axi_arvalid; // valid read address and control information input m_axi_arready; // slave is ready to accept an address //Read data channel input [M_IDW-1:0] m_axi_rid; input [63 : 0] m_axi_rdata; // master read data input [1 : 0] m_axi_rresp; // status of the read transfer input m_axi_rlast; // signals last transfer in a read burst input m_axi_rvalid; // signaling the required read data output m_axi_rready; // master can accept the readback data //######################################################################### //REGISTER/WIRE DECLARATIONS //######################################################################### reg [31 : 0] m_axi_awaddr; reg [7:0] m_axi_awlen; reg [2:0] m_axi_awsize; reg m_axi_awvalid; reg [63 : 0] m_axi_wdata; reg [63 : 0] m_axi_rdata_reg; reg [7 : 0] m_axi_wstrb; reg m_axi_wlast; reg m_axi_wvalid; reg awvalid_b; reg [31:0] awaddr_b; reg [2:0] awsize_b; reg [7:0] awlen_b; reg wvalid_b; reg [63:0] wdata_b; reg [7:0] wstrb_b; reg [63 : 0] wdata_aligned; reg [7 : 0] wstrb_aligned; reg txrr_access; reg txrr_access_reg; reg [31:0] txrr_data; reg [31:0] txrr_srcaddr; //wires wire aw_go; wire w_go; wire readinfo_wren; wire readinfo_full; wire [47:0] readinfo_out; wire [47:0] readinfo_in; wire awvalid_in; wire [1:0] rxwr_datamode; wire [AW-1:0] rxwr_dstaddr; wire [DW-1:0] rxwr_data; wire [AW-1:0] rxwr_srcaddr; wire [1:0] rxrd_datamode; wire [3:0] rxrd_ctrlmode; wire [AW-1:0] rxrd_dstaddr; wire [AW-1:0] rxrd_srcaddr; wire [1:0] txrr_datamode; wire [3:0] txrr_ctrlmode; wire [31:0] txrr_dstaddr; //######################################################################### //EMESH 2 PACKET CONVERSION //######################################################################### //RXWR packet2emesh p2e_rxwr ( // Outputs .write_out (), .datamode_out (rxwr_datamode[1:0]), .ctrlmode_out (), .dstaddr_out (rxwr_dstaddr[AW-1:0]), .data_out (rxwr_data[DW-1:0]), .srcaddr_out (rxwr_srcaddr[AW-1:0]), // Inputs .packet_in (rxwr_packet[PW-1:0]) ); //RXRD packet2emesh p2e_rxrd ( // Outputs .write_out (), .datamode_out (rxrd_datamode[1:0]), .ctrlmode_out (rxrd_ctrlmode[3:0]), .dstaddr_out (rxrd_dstaddr[AW-1:0]), .data_out (), .srcaddr_out (rxrd_srcaddr[AW-1:0]), // Inputs .packet_in (rxrd_packet[PW-1:0]) ); //TXRR emesh2packet e2p ( // Outputs .packet_out (txrr_packet[PW-1:0]), // Inputs .write_in (1'b1), .datamode_in (txrr_datamode[1:0]), .ctrlmode_in (txrr_ctrlmode[3:0]), .dstaddr_in (txrr_dstaddr[AW-1:0]), .data_in (txrr_data[DW-1:0]), .srcaddr_in (txrr_srcaddr[AW-1:0]) ); //######################################################################### //AXI unimplemented constants //######################################################################### assign m_axi_awburst[1:0] = 2'b01; //only increment burst supported assign m_axi_awcache[3:0] = 4'b0000;//TODO: correct value?? assign m_axi_awprot[2:0] = 3'b000; assign m_axi_awqos[3:0] = 4'b0000; assign m_axi_awlock = 2'b00; assign m_axi_arburst[1:0] = 2'b01; //only increment burst supported assign m_axi_arcache[3:0] = 4'b0000; assign m_axi_arprot[2:0] = 3'h0; assign m_axi_arqos[3:0] = 4'h0; assign m_axi_bready = 1'b1;//tie to wait signal???? //######################################################################### //Write address channel //######################################################################### assign aw_go = m_axi_awvalid & m_axi_awready; assign w_go = m_axi_wvalid & m_axi_wready; assign rxwr_wait = awvalid_b | wvalid_b; assign awvalid_in = rxwr_access & ~awvalid_b & ~wvalid_b; // generate write-address signals always @( posedge m_axi_aclk ) if(!m_axi_aresetn) begin m_axi_awvalid <= 1'b0; m_axi_awaddr[31:0] <= 32'd0; m_axi_awlen[7:0] <= 8'd0; m_axi_awsize[2:0] <= 3'd0; awvalid_b <= 1'b0; awaddr_b <= 'd0; awlen_b[7:0] <= 'd0; awsize_b[2:0] <= 'd0; end else begin if( ~m_axi_awvalid | aw_go ) begin if( awvalid_b ) begin m_axi_awvalid <= 1'b1; m_axi_awaddr[31:0] <= awaddr_b[31:0]; m_axi_awlen[7:0] <= awlen_b[7:0]; m_axi_awsize[2:0] <= awsize_b[2:0]; end else begin m_axi_awvalid <= awvalid_in; m_axi_awaddr[31:0] <= rxwr_dstaddr[31:0]; m_axi_awlen[7:0] <= 8'b0; m_axi_awsize[2:0] <= { 1'b0, rxwr_datamode[1:0]}; end end if( awvalid_in & m_axi_awvalid & ~aw_go ) awvalid_b <= 1'b1; else if( aw_go ) awvalid_b <= 1'b0; //Pipeline stage if( awvalid_in ) begin awaddr_b[31:0] <= rxwr_dstaddr[31:0]; awlen_b[7:0] <= 8'b0; awsize_b[2:0] <= { 1'b0, rxwr_datamode[1:0] }; end end // else: !if(~m_axi_aresetn) //######################################################################### //Write data alignment circuit //######################################################################### always @* case( rxwr_datamode[1:0] ) 2'd0: wdata_aligned[63:0] = { 8{rxwr_data[7:0]}}; 2'd1: wdata_aligned[63:0] = { 4{rxwr_data[15:0]}}; 2'd2: wdata_aligned[63:0] = { 2{rxwr_data[31:0]}}; default: wdata_aligned[63:0] = { rxwr_srcaddr[31:0], rxwr_data[31:0]}; endcase always @* begin case(rxwr_datamode[1:0]) 2'd0: // byte case(rxwr_dstaddr[2:0]) 3'd0: wstrb_aligned[7:0] = 8'h01; 3'd1: wstrb_aligned[7:0] = 8'h02; 3'd2: wstrb_aligned[7:0] = 8'h04; 3'd3: wstrb_aligned[7:0] = 8'h08; 3'd4: wstrb_aligned[7:0] = 8'h10; 3'd5: wstrb_aligned[7:0] = 8'h20; 3'd6: wstrb_aligned[7:0] = 8'h40; default: wstrb_aligned[7:0] = 8'h80; endcase 2'd1: // 16b hword case(rxwr_dstaddr[2:1]) 2'd0: wstrb_aligned[7:0] = 8'h03; 2'd1: wstrb_aligned[7:0] = 8'h0c; 2'd2: wstrb_aligned[7:0] = 8'h30; default: wstrb_aligned[7:0] = 8'hc0; endcase 2'd2: // 32b word if(rxwr_dstaddr[2]) wstrb_aligned[7:0] = 8'hf0; else wstrb_aligned[7:0] = 8'h0f; 2'd3: wstrb_aligned[7:0] = 8'hff; endcase // case (emwr_datamode[1:0]) end // always @ * //######################################################################### //Write data channel //######################################################################### always @ (posedge m_axi_aclk ) if(~m_axi_aresetn) begin m_axi_wvalid <= 1'b0; m_axi_wdata[63:0] <= 64'b0; m_axi_wstrb[7:0] <= 8'b0; m_axi_wlast <= 1'b1; // TODO:bursts!! wvalid_b <= 1'b0; wdata_b[63:0] <= 64'b0; wstrb_b[7:0] <= 8'b0; end else begin if( ~m_axi_wvalid | w_go ) begin if( wvalid_b ) begin m_axi_wvalid <= 1'b1; m_axi_wdata[63:0] <= wdata_b[63:0]; m_axi_wstrb[7:0] <= wstrb_b[7:0]; end else begin m_axi_wvalid <= awvalid_in; m_axi_wdata[63:0] <= wdata_aligned[63:0]; m_axi_wstrb[7:0] <= wstrb_aligned[7:0]; end end // if ( ~axi_wvalid | w_go ) if( rxwr_access & m_axi_wvalid & ~w_go ) wvalid_b <= 1'b1; else if( w_go ) wvalid_b <= 1'b0; if( awvalid_in ) begin wdata_b[63:0] <= wdata_aligned[63:0]; wstrb_b[7:0] <= wstrb_aligned[7:0]; end end // else: !if(~m_axi_aresetn) //######################################################################### //Read request channel //######################################################################### //1. read request comes in on ar channel //2. use src address to match with writes coming back //3. Assumes in order returns assign readinfo_in[47:0] = { 7'b0, rxrd_srcaddr[31:0],//40:9 rxrd_dstaddr[2:0], //8:6 rxrd_ctrlmode[3:0],//5:2 rxrd_datamode[1:0] }; fifo_sync #( // parameters .AW (5), .DW (48)) fifo_readinfo_i ( // outputs .rd_data (readinfo_out[47:0]), .rd_empty (), .wr_full (readinfo_full), // inputs .clk (m_axi_aclk), .reset (~m_axi_aresetn), .wr_data (readinfo_in[47:0]), .wr_en (m_axi_arvalid & m_axi_arready), .rd_en (m_axi_rready & m_axi_rvalid) ); assign txrr_datamode[1:0] = readinfo_out[1:0]; assign txrr_ctrlmode[3:0] = readinfo_out[5:2]; assign txrr_dstaddr[31:0] = readinfo_out[40:9]; //######################################################################### //Read address channel //######################################################################### assign m_axi_araddr[31:0] = rxrd_dstaddr[31:0]; assign m_axi_arsize[2:0] = {1'b0, rxrd_datamode[1:0]}; assign m_axi_arlen[7:0] = 8'd0; assign m_axi_arvalid = rxrd_access & ~readinfo_full; assign rxrd_wait = readinfo_full | ~m_axi_arready; //######################################################################### //Read response channel //######################################################################### assign m_axi_rready = ~txrr_wait; //pass through always @( posedge m_axi_aclk ) if ( ~m_axi_aresetn ) m_axi_rdata_reg <= 'b0; else m_axi_rdata_reg <= m_axi_rdata; always @( posedge m_axi_aclk ) if( ~m_axi_aresetn ) begin txrr_data[31:0] <= 32'b0; txrr_srcaddr[31:0] <= 32'b0; txrr_access_reg <= 1'b0; txrr_access <= 1'b0; end else begin txrr_access_reg <= m_axi_rready & m_axi_rvalid; txrr_access <= txrr_access_reg;//added pipeline stage for data // steer read data according to size & host address lsbs //all data needs to be right aligned //(this is due to the Epiphany right aligning all words) case(readinfo_out[1:0])//datamode 2'd0: // byte read case(readinfo_out[8:6]) 3'd0: txrr_data[7:0] <= m_axi_rdata_reg[7:0]; 3'd1: txrr_data[7:0] <= m_axi_rdata_reg[15:8]; 3'd2: txrr_data[7:0] <= m_axi_rdata_reg[23:16]; 3'd3: txrr_data[7:0] <= m_axi_rdata_reg[31:24]; 3'd4: txrr_data[7:0] <= m_axi_rdata_reg[39:32]; 3'd5: txrr_data[7:0] <= m_axi_rdata_reg[47:40]; 3'd6: txrr_data[7:0] <= m_axi_rdata_reg[55:48]; default: txrr_data[7:0] <= m_axi_rdata_reg[63:56]; endcase 2'd1: // 16b hword case( readinfo_out[8:7] ) 2'd0: txrr_data[15:0] <= m_axi_rdata_reg[15:0]; 2'd1: txrr_data[15:0] <= m_axi_rdata_reg[31:16]; 2'd2: txrr_data[15:0] <= m_axi_rdata_reg[47:32]; default: txrr_data[15:0] <= m_axi_rdata_reg[63:48]; endcase 2'd2: // 32b word if( readinfo_out[8] ) txrr_data[31:0] <= m_axi_rdata_reg[63:32]; else txrr_data[31:0] <= m_axi_rdata_reg[31:0]; // 64b word already defined by defaults above 2'd3: begin // 64b dword txrr_data[31:0] <= m_axi_rdata_reg[31:0]; txrr_srcaddr[31:0] <= m_axi_rdata_reg[63:32]; end endcase end // else: !if( ~m_axi_aresetn ) endmodule // emaxi // Local Variables: // verilog-library-directories:("." "../../emesh/hdl" "../../memory/hdl") // End: /* copyright (c) 2014 adapteva, inc. contributed by fred huettig contributed by andreas olofsson this program is free software: you can redistribute it and/or modify it under the terms of the gnu general public license as published by the free software foundation, either version 3 of the license, or (at your option) any later version. this program is distributed in the hope that it will be useful, but without any warranty; without even the implied warranty of merchantability or fitness for a particular purpose. see the gnu general public license for more details. you should have received a copy of the gnu general public license along with this program (see the file copying). if not, see . */