// ######################################################################## // ELINK CONFIGURATION REGISTER FILE // ######################################################################## `include "elink_regmap.v" module erx_cfg (/*AUTOARG*/ // Outputs mi_dout, mmu_enable, remap_mode, remap_base, remap_pattern, remap_sel, timer_cfg, idelay_value, load_taps, test_mode, // Inputs nreset, clk, mi_en, mi_we, mi_addr, mi_din, erx_test_access, erx_test_data, gpio_datain, rx_status ); /******************************/ /*Compile Time Parameters */ /******************************/ parameter RFAW = 6; // 32 registers for now parameter GROUP = 4'h0; /******************************/ /*HARDWARE RESET (EXTERNAL) */ /******************************/ input nreset; input clk; /*****************************/ /*SIMPLE MEMORY INTERFACE */ /*****************************/ input mi_en; input mi_we; // single we, must write 32 bit words input [14:0] mi_addr; // complete physical address (no shifting!) input [31:0] mi_din; output [31:0] mi_dout; //test interface input erx_test_access; input [31:0] erx_test_data; /*****************************/ /*CONFIG SIGNALS */ /*****************************/ //rx output mmu_enable; // enables MMU on rx path (static) input [8:0] gpio_datain; // frame and data inputs (static) input [15:0] rx_status; // etx status signals output [1:0] remap_mode; // remap mode (static) output [31:0] remap_base; // base for dynamic remap (static) output [11:0] remap_pattern; // patter for static remap (static) output [11:0] remap_sel; // selects for static remap (static) output [1:0] timer_cfg; // timeout config (00=off) (static) output [44:0] idelay_value; // tap values for erx idelay output load_taps; // loads the idelay_value into IDELAY prim output test_mode; // testmode blocks all rx ports to fifo /*------------------------CODE BODY---------------------------------------*/ //registers reg [31:0] ecfg_rx_reg; reg [31:0] ecfg_offset_reg; reg [8:0] ecfg_gpio_reg; reg [2:0] ecfg_rx_status_reg; reg [44:0] idelay; reg load_taps; reg [31:0] mi_dout; reg [31:0] ecfg_testdata_reg; //wires wire ecfg_read; wire ecfg_write; wire ecfg_rx_write; wire ecfg_offset_write; wire ecfg_remap_write; wire ecfg_idelay0_write; wire ecfg_idelay1_write; wire ecfg_testdata_write; /*****************************/ /*ADDRESS DECODE LOGIC */ /*****************************/ //read/write decode assign ecfg_write = mi_en & mi_we; assign ecfg_read = mi_en & ~mi_we; //Config write enables assign ecfg_rx_write = ecfg_write & (mi_addr[RFAW+1:2]==`ERX_CFG); assign ecfg_offset_write = ecfg_write & (mi_addr[RFAW+1:2]==`ERX_OFFSET); assign ecfg_idelay0_write = ecfg_write & (mi_addr[RFAW+1:2]==`ERX_IDELAY0); assign ecfg_idelay1_write = ecfg_write & (mi_addr[RFAW+1:2]==`ERX_IDELAY1); assign ecfg_testdata_write = ecfg_write & (mi_addr[RFAW+1:2]==`ERX_TESTDATA); //########################### //# RXCFG //########################### always @ (posedge clk or negedge nreset) if(!nreset) ecfg_rx_reg[31:0] <= 'b0; else if (ecfg_rx_write) ecfg_rx_reg[31:0] <= mi_din[31:0]; assign test_mode = ecfg_rx_reg[0]; assign mmu_enable = ecfg_rx_reg[1]; assign remap_mode[1:0] = ecfg_rx_reg[3:2]; assign remap_sel[11:0] = ecfg_rx_reg[15:4]; assign remap_pattern[11:0] = ecfg_rx_reg[27:16]; assign timer_cfg[1:0] = ecfg_rx_reg[29:28]; //########################### //# DATAIN //########################### always @ (posedge clk) ecfg_gpio_reg[8:0] <= gpio_datain[8:0]; //###########################1 //# DEBUG //########################### always @ (posedge clk or negedge nreset) if(!nreset) ecfg_rx_status_reg[2:0] <= 'b0; else ecfg_rx_status_reg[2:0] <= ecfg_rx_status_reg[2:0] | rx_status[2:0]; //###########################1 //# DYNAMIC REMAP BASE //########################### always @ (posedge clk) if (ecfg_offset_write) ecfg_offset_reg[31:0] <= mi_din[31:0]; assign remap_base[31:0] = ecfg_offset_reg[31:0]; //###########################1 //# IDELAY TAP VALUES //########################### always @ (posedge clk or negedge nreset) if(!nreset) idelay[44:0] <= 'b0; else if (ecfg_idelay0_write) idelay[31:0] <= mi_din[31:0]; else if(ecfg_idelay1_write) idelay[44:32] <= mi_din[12:0]; //Construct delay for io (5*9 bits) assign idelay_value[44:0] = {idelay[44],idelay[35:32],//frame idelay[43],idelay[31:28],//d7 idelay[42],idelay[27:24],//d6 idelay[41],idelay[23:20],//d5 idelay[40],idelay[19:16],//d4 idelay[39],idelay[15:12],//d3 idelay[38],idelay[11:8], //d2 idelay[37],idelay[7:4], //d1 idelay[36],idelay[3:0] //d0 }; always @ (posedge clk) load_taps <= ecfg_idelay1_write; //############################### //# TESTMODE (ADD OR LFSR //############################### wire testmode_add; wire testmode_lfsr; always @ (posedge clk) if(ecfg_testdata_write) ecfg_testdata_reg[31:0] <= mi_din[31:0]; else if(erx_test_access) ecfg_testdata_reg[31:0] <= ecfg_testdata_reg[31:0] + erx_test_data[31:0]; //############################### //# DATA READBACK MUX //############################### //Pipelineing readback always @ (posedge clk) if(ecfg_read) case(mi_addr[RFAW+1:2]) `ERX_CFG: mi_dout[31:0] <= {ecfg_rx_reg[31:0]}; `ERX_GPIO: mi_dout[31:0] <= {23'b0, ecfg_gpio_reg[8:0]}; `ERX_STATUS: mi_dout[31:0] <= {16'b0, rx_status[15:3],ecfg_rx_status_reg[2:0]}; `ERX_OFFSET: mi_dout[31:0] <= {ecfg_offset_reg[31:0]}; `ERX_TESTDATA: mi_dout[31:0] <= {ecfg_testdata_reg[31:0]}; default: mi_dout[31:0] <= 32'd0; endcase // case (mi_addr[RFAW+1:2]) else mi_dout[31:0] <= 32'd0; endmodule // ecfg_rx