module esaxi (/*autoarg*/ // Outputs txwr_access, txwr_packet, txrd_access, txrd_packet, rxrr_wait, s_axi_arready, s_axi_awready, s_axi_bid, s_axi_bresp, s_axi_bvalid, s_axi_rid, s_axi_rdata, s_axi_rlast, s_axi_rresp, s_axi_rvalid, s_axi_wready, // Inputs txwr_wait, txrd_wait, rxrr_access, rxrr_packet, s_axi_aclk, s_axi_aresetn, s_axi_arid, s_axi_araddr, s_axi_arburst, s_axi_arcache, s_axi_arlock, s_axi_arlen, s_axi_arprot, s_axi_arqos, s_axi_arsize, s_axi_arvalid, s_axi_awid, s_axi_awaddr, s_axi_awburst, s_axi_awcache, s_axi_awlock, s_axi_awlen, s_axi_awprot, s_axi_awqos, s_axi_awsize, s_axi_awvalid, s_axi_bready, s_axi_rready, s_axi_wid, s_axi_wdata, s_axi_wlast, s_axi_wstrb, s_axi_wvalid ); parameter [11:0] ID = 12'h810; parameter IDW = 12; parameter PW = 104; parameter [15:0] RETURN_ADDR = {ID,4'hE}; parameter AW = 32; parameter DW = 32; /*****************************/ /*Write request for TX fifo */ /*****************************/ output txwr_access; output [PW-1:0] txwr_packet; input txwr_wait; /*****************************/ /*Read request for TX fifo */ /*****************************/ output txrd_access; output [PW-1:0] txrd_packet; input txrd_wait; /*****************************/ /*Read response from RX fifo */ /*****************************/ input rxrr_access; input [PW-1:0] rxrr_packet; output rxrr_wait; /*****************************/ /*AXI slave interface */ /*****************************/ //Clock and reset input s_axi_aclk; input s_axi_aresetn; //Read address channel input [IDW-1:0] s_axi_arid; //write address ID input [31:0] s_axi_araddr; input [1:0] s_axi_arburst; input [3:0] s_axi_arcache; input [1:0] s_axi_arlock; input [7:0] s_axi_arlen; input [2:0] s_axi_arprot; input [3:0] s_axi_arqos; output s_axi_arready; input [2:0] s_axi_arsize; input s_axi_arvalid; //Write address channel input [IDW-1:0] s_axi_awid; //write address ID input [31:0] s_axi_awaddr; input [1:0] s_axi_awburst; input [3:0] s_axi_awcache; input [1:0] s_axi_awlock; input [7:0] s_axi_awlen; input [2:0] s_axi_awprot; input [3:0] s_axi_awqos; input [2:0] s_axi_awsize; input s_axi_awvalid; output s_axi_awready; //Buffered write response channel output [IDW-1:0] s_axi_bid; //write address ID output [1:0] s_axi_bresp; output s_axi_bvalid; input s_axi_bready; //Read channel output [IDW-1:0] s_axi_rid; //write address ID output [31:0] s_axi_rdata; output s_axi_rlast; output [1:0] s_axi_rresp; output s_axi_rvalid; input s_axi_rready; //Write channel input [IDW-1:0] s_axi_wid; //write address ID input [31:0] s_axi_wdata; input s_axi_wlast; input [3:0] s_axi_wstrb; input s_axi_wvalid; output s_axi_wready; //################################################### //#WIRE/REG DECLARATIONS //################################################### reg s_axi_awready; reg s_axi_wready; reg s_axi_bvalid; reg [1:0] s_axi_bresp; reg s_axi_arready; reg [31:0] axi_awaddr; // 32b for epiphany addr reg [1:0] axi_awburst; reg [2:0] axi_awsize; reg [31:0] axi_araddr; reg [7:0] axi_arlen; reg [1:0] axi_arburst; reg [2:0] axi_arsize; reg [31:0] s_axi_rdata; reg [1:0] s_axi_rresp; reg s_axi_rlast; reg s_axi_rvalid; reg read_active; reg [31:0] read_addr; reg write_active; reg b_wait; // waiting to issue write response (unlikely?) reg txwr_access; reg [1:0] txwr_datamode; reg [31:0] txwr_dstaddr; reg [31:0] txwr_data; reg [31:0] txwr_data_reg; reg [31:0] txwr_dstaddr_reg; reg [1:0] txwr_datamode_reg; reg txrd_access; reg [1:0] txrd_datamode; reg [31:0] txrd_dstaddr; reg [31:0] txrd_srcaddr; //read reaspne address reg pre_wr_en; // delay for data alignment reg ractive_reg; // need leading edge of active for 1st req reg rnext; wire last_wr_beat; wire last_rd_beat; wire [31:0] rxrr_mux_data; wire [DW-1:0] rxrr_data; //################################################### //#PACKET TO MESH //################################################### //TXWR emesh2packet e2p_txwr ( // Outputs .packet_out (txwr_packet[PW-1:0]), // Inputs .access_in (txwr_access), .write_in (1'b1), .datamode_in (txwr_datamode[1:0]), .ctrlmode_in (4'b0), .dstaddr_in (txwr_dstaddr[AW-1:0]), .data_in (txwr_data[DW-1:0]), .srcaddr_in (32'b0)//only 32b slave write supported ); //TXRD emesh2packet e2p_txrd ( // Outputs .packet_out (txrd_packet[PW-1:0]), // Inputs .access_in (txrd_access), .write_in (txrd_write), .datamode_in (txrd_datamode[1:0]), .ctrlmode_in (4'b0), .dstaddr_in (txrd_dstaddr[AW-1:0]), .data_in (32'b0), .srcaddr_in (txrd_srcaddr[AW-1:0]) ); //RXRR packet2emesh p2e_rxrr ( // Outputs .access_out (), .write_out (), .datamode_out (), .ctrlmode_out (), .dstaddr_out (), .data_out (rxrr_data[DW-1:0]), .srcaddr_out (), // Inputs .packet_in (rxrr_packet[PW-1:0]) ); //################################################### //#WRITE ADDRESS CHANNEL //################################################### assign last_wr_beat = s_axi_wready & s_axi_wvalid & s_axi_wlast; // axi_awready is asserted when there is no write transfer in progress always @(posedge s_axi_aclk ) begin if(~s_axi_aresetn) begin s_axi_awready <= 1'b0; write_active <= 1'b0; end else begin // we're always ready for an address cycle if we're not doing something else // note: might make this faster by going ready on last beat instead of after, // but if we want the very best each channel should be fifo'd. if( ~s_axi_awready & ~write_active & ~b_wait ) s_axi_awready <= 1'b1; else if( s_axi_awvalid ) s_axi_awready <= 1'b0; // the write cycle is "active" as soon as we capture an address, it // ends on the last beat. if( s_axi_awready & s_axi_awvalid ) write_active <= 1'b1; else if( last_wr_beat ) write_active <= 1'b0; end // else: !if(~s_axi_aresetn) end // always @ (posedge s_axi_aclk ) // capture address & other aw info, update address during cycle always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin //s_axi_bid <= 'd0; // capture for write response axi_awaddr[31:0] <= 32'd0; axi_awsize[2:0] <= 3'd0; axi_awburst[1:0] <= 2'd0; end else begin if( s_axi_awready & s_axi_awvalid ) begin axi_awaddr[31:0] <= s_axi_awaddr[31:0]; axi_awsize <= s_axi_awsize; // 0=byte, 1=16b, 2=32b axi_awburst <= s_axi_awburst; // type, 0=fixed, 1=incr, 2=wrap end else if( s_axi_wvalid & s_axi_wready ) if( axi_awburst == 2'b01 ) begin //incremental burst // the write address for all the beats in the transaction are increments by the data width. // note: this should be based on awsize instead to support narrow bursts, i think. axi_awaddr[31:2] <= axi_awaddr[31:2] + 30'd1; //awaddr alignedto data width axi_awaddr[1:0] <= 2'b0; end // both fixed & wrapping types are treated as fixed, no update. end // else: !if(~s_axi_aresetn) //################################################### //#WRITE RESPONSE CHANNEL //################################################### always @ (posedge s_axi_aclk) if(~s_axi_aresetn) s_axi_wready <= 1'b0; else begin if( last_wr_beat ) s_axi_wready <= 1'b0; else if( write_active ) s_axi_wready <= ~txwr_wait; end always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin s_axi_bvalid <= 1'b0; s_axi_bresp[1:0] <= 2'b0; b_wait <= 1'b0; end else begin if( last_wr_beat ) begin s_axi_bvalid <= 1'b1; s_axi_bresp[1:0] <= 2'b0; // 'okay' response b_wait <= ~s_axi_bready; // note: assumes bready will not drop without valid? end else if (s_axi_bready & s_axi_bvalid) begin s_axi_bvalid <= 1'b0; b_wait <= 1'b0; end end // else: !if( s_axi_aresetn == 1'b0 ) //################################################### //#READ REQUEST CHANNEL //################################################### assign last_rd_beat = s_axi_rvalid & s_axi_rlast & s_axi_rready; always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin s_axi_arready <= 1'b0; read_active <= 1'b0; end else begin //arready if( ~s_axi_arready & ~read_active ) s_axi_arready <= 1'b1; else if( s_axi_arvalid ) s_axi_arready <= 1'b0; //read_active if( s_axi_arready & s_axi_arvalid ) read_active <= 1'b1; else if( last_rd_beat ) read_active <= 1'b0; end // else: !if( s_axi_aresetn == 1'b0 ) //Read address channel state machine always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin axi_araddr[31:0] <= 0; axi_arlen <= 8'd0; axi_arburst <= 2'd0; axi_arsize[2:0] <= 3'b0; s_axi_rlast <= 1'b0; //s_axi_rid <= 'd0; end else begin if( s_axi_arready & s_axi_arvalid ) begin axi_araddr[31:0] <= s_axi_araddr[31:0]; //NOTE: upper 2 bits get chopped by Zynq axi_arlen <= s_axi_arlen; axi_arburst <= s_axi_arburst; axi_arsize <= s_axi_arsize; s_axi_rlast <= ~(|s_axi_arlen); //s_axi_rid <= s_axi_arid; end else if( s_axi_rvalid & s_axi_rready) begin axi_arlen <= axi_arlen - 1; if(axi_arlen == 8'd1) s_axi_rlast <= 1'b1; if( s_axi_arburst == 2'b01) begin //incremental burst // the read address for all the beats in the transaction are increments by awsize // note: this should be based on awsize instead to support narrow bursts, i think? axi_araddr[31:2] <= axi_araddr[31:2] + 1; //araddr aligned to 4 byte boundary axi_araddr[1:0] <= 2'b0; //for awsize = 4 bytes (010) end end // if ( s_axi_rvalid & s_axi_rready) end // else: !if( s_axi_aresetn == 1'b0 ) //################################################### //#WRITE REQUEST //################################################### assign txwr_write = 1'b1; always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin txwr_data_reg[31:0] <= 32'd0; txwr_dstaddr_reg[31:0] <= 32'd0; txwr_datamode_reg[1:0] <= 2'd0; txwr_access <= 1'b0; pre_wr_en <= 1'b0; end else begin pre_wr_en <= s_axi_wready & s_axi_wvalid; txwr_access <= pre_wr_en; txwr_datamode_reg[1:0] <= axi_awsize[1:0]; txwr_dstaddr_reg[31:2] <= axi_awaddr[31:2]; //set lsbs of address based on write strobes if(s_axi_wstrb[0] | (axi_awsize[1:0]==2'b10)) begin txwr_data_reg[31:0] <= s_axi_wdata[31:0]; txwr_dstaddr_reg[1:0] <= 2'd0; end else if(s_axi_wstrb[1]) begin txwr_data_reg[31:0] <= {8'd0, s_axi_wdata[31:8]}; txwr_dstaddr_reg[1:0] <= 2'd1; end else if(s_axi_wstrb[2]) begin txwr_data_reg[31:0] <= {16'd0, s_axi_wdata[31:16]}; txwr_dstaddr_reg[1:0] <= 2'd2; end else begin txwr_data_reg[31:0] <= {24'd0, s_axi_wdata[31:24]}; txwr_dstaddr_reg[1:0] <= 2'd3; end end // else: !if(~s_axi_aresetn) //Pipeline stage! always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin txwr_data[31:0] <= 32'd0; txwr_dstaddr[31:0] <= 32'd0; txwr_datamode[1:0] <= 2'd0; end else begin txwr_data[31:0] <= txwr_data_reg[31:0]; txwr_dstaddr[31:0] <= txwr_dstaddr_reg[31:0]; txwr_datamode[1:0] <= txwr_datamode_reg[1:0]; end // else: !if(~s_axi_aresetn) //################################################### //#READ REQUEST (DATA CHANNEL) //################################################### // -- reads are performed by sending a read // -- request out the tx port and waiting for // -- data to come back through the rx read response port. // -- // -- because elink reads are not generally // -- returned in order, we will only allow // -- one at a time. assign txrd_write = 1'b0; always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin txrd_access <= 1'b0; txrd_datamode[1:0] <= 2'd0; txrd_dstaddr[31:0] <= 32'd0; txrd_srcaddr[31:0] <= 32'd0; ractive_reg <= 1'b0; rnext <= 1'b0; end else begin ractive_reg <= read_active; rnext <= s_axi_rvalid & s_axi_rready & ~s_axi_rlast; txrd_access <= ( ~ractive_reg & read_active ) | rnext; txrd_datamode[1:0] <= axi_arsize[1:0]; txrd_dstaddr[31:0] <= axi_araddr[31:0]; txrd_srcaddr[31:0] <= {RETURN_ADDR, 16'd0}; //TODO: use arid+srcaddr for out of order ? end //################################################### //#READ RESPONSE (DATA CHANNEL) //################################################### //Read response AXI state machine //Only one outstanding read assign rxrr_wait = 1'b0; always @( posedge s_axi_aclk ) if (~s_axi_aresetn) begin s_axi_rvalid <= 1'b0; s_axi_rdata[31:0] <= 32'd0; s_axi_rresp <= 2'd0; end else begin if( rxrr_access ) begin s_axi_rvalid <= 1'b1; s_axi_rresp <= 2'd0; case( axi_arsize[1:0] ) 2'b00: s_axi_rdata[31:0] <= {4{rxrr_data[7:0]}}; //8-bit 2'b01: s_axi_rdata[31:0] <= {2{rxrr_data[15:0]}}; //16-bit default: s_axi_rdata[31:0] <= rxrr_data[31:0]; //32-bit endcase // case ( axi_arsize[1:0] ) end else if( s_axi_rready ) s_axi_rvalid <= 1'b0; end // else: !if( s_axi_aresetn == 1'b0 ) endmodule // esaxi /* Copyright (C) 2014 Adapteva, Inc. Contributed by Andreas Olofsson Contributed by Fred Huettig This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program (see the file COPYING). If not, see . */