/* ######################################################################## ELINK CONFIGURATION REGISTER FILE ######################################################################## */ module ecfg (/*AUTOARG*/ // Outputs soft_reset, mi_dout, ecfg_tx_enable, ecfg_tx_mmu_enable, ecfg_tx_gpio_enable, ecfg_tx_ctrlmode, ecfg_timeout_enable, ecfg_rx_enable, ecfg_rx_mmu_enable, ecfg_rx_gpio_enable, ecfg_clk_settings, ecfg_coreid, ecfg_dataout, // Inputs hard_reset, mi_clk, mi_en, mi_we, mi_addr, mi_din, ecfg_rx_datain, ecfg_tx_datain, embox_not_empty, embox_full, ecfg_tx_debug, ecfg_rx_debug ); /******************************/ /*Compile Time Parameters */ /******************************/ parameter RFAW = 5; // 32 registers for now parameter DEFAULT_COREID = 12'h808; // reset value for ecfg_coreid parameter DEFAULT_VERSION = 16'h0000; // reset value for version parameter DEFAULT_CLKDIV = 4'd7; /******************************/ /*HARDWARE RESET (EXTERNAL) */ /******************************/ input hard_reset; // ecfg registers reset only by "hard reset" output soft_reset; // soft reset output driven by register /*****************************/ /*SIMPLE MEMORY INTERFACE */ /*****************************/ input mi_clk; input mi_en; input mi_we; // single we, must write 32 bit words input [19:0] mi_addr; // complete physical address (no shifting!) input [31:0] mi_din; output [31:0] mi_dout; /*****************************/ /*ELINK CONTROL SIGNALS */ /*****************************/ //reset //tx output ecfg_tx_enable; // enable signal for TX output ecfg_tx_mmu_enable; // enables MMU on transmit path output ecfg_tx_gpio_enable; // forces TX output pins to constants output [3:0] ecfg_tx_ctrlmode; // value for emesh ctrlmode tag output ecfg_timeout_enable; // enables axi slave timeout circuit //rx output ecfg_rx_enable; // enable signal for rx output ecfg_rx_mmu_enable; // enables MMU on rx path output ecfg_rx_gpio_enable; // forces rx wait pins to constants //clocks output [15:0] ecfg_clk_settings; // clock settings //coreid output [11:0] ecfg_coreid; // core-id of fpga elink //gpio input [8:0] ecfg_rx_datain; // frame and data input [1:0] ecfg_tx_datain; // wait signals output [10:0] ecfg_dataout; // data for elink outputs //debug input embox_not_empty; // not-empty interrupt input embox_full; // full debug signal input [15:0] ecfg_tx_debug; // etx debug signals input [15:0] ecfg_rx_debug; // etx debug signals /*------------------------CODE BODY---------------------------------------*/ //registers reg ecfg_reset_reg; reg [8:0] ecfg_tx_reg; reg [4:0] ecfg_rx_reg; reg [15:0] ecfg_clk_reg; reg [11:0] ecfg_coreid_reg; reg [15:0] ecfg_version_reg; reg [10:0] ecfg_datain_reg; reg [10:0] ecfg_dataout_reg; reg [7:0] ecfg_debug_reg; reg [31:0] mi_dout; //wires wire ecfg_read; wire ecfg_write; wire ecfg_match; wire ecfg_regmux; wire [31:0] ecfg_reg_mux; wire ecfg_tx_write; wire ecfg_rx_write; wire ecfg_clk_write; wire ecfg_coreid_write; wire ecfg_version_write; wire ecfg_dataout_write; wire ecfg_reset_write; wire [31:0] ecfg_debug_vector; /*****************************/ /*ADDRESS DECODE LOGIC */ /*****************************/ //read/write decode assign ecfg_write = mi_en & mi_we; assign ecfg_read = mi_en & ~mi_we; //Config write enables assign ecfg_reset_write = ecfg_write & (mi_addr[RFAW+1:2]==`ELRESET); assign ecfg_clk_write = ecfg_write & (mi_addr[RFAW+1:2]==`ELCLK); assign ecfg_tx_write = ecfg_write & (mi_addr[RFAW+1:2]==`ELTX); assign ecfg_rx_write = ecfg_write & (mi_addr[RFAW+1:2]==`ELRX); assign ecfg_coreid_write = ecfg_write & (mi_addr[RFAW+1:2]==`ELCOREID); assign ecfg_dataout_write = ecfg_write & (mi_addr[RFAW+1:2]==`ELDATAOUT); assign ecfg_version_write = ecfg_write & (mi_addr[RFAW+1:2]==`ELVERSION); //########################### //# RESET //########################### always @ (posedge mi_clk) if(hard_reset) ecfg_reset_reg <= 1'b0; else if (ecfg_reset_write) ecfg_reset_reg <= mi_din[0]; assign soft_reset = ecfg_reset_reg; //########################### //# TX //########################### always @ (posedge mi_clk) if(hard_reset) ecfg_tx_reg[8:0] <= 9'b0; else if (ecfg_tx_write) ecfg_tx_reg[8:0] <= mi_din[8:0]; assign ecfg_tx_enable = ecfg_tx_reg[0]; assign ecfg_tx_mmu_enable = ecfg_tx_reg[1]; assign ecfg_tx_gpio_enable = (ecfg_tx_reg[3:2]==2'b01); assign ecfg_tx_ctrlmode[3:0] = ecfg_tx_reg[7:4]; assign ecfg_timeout_enable = ecfg_tx_reg[8]; //########################### //# RX //########################### always @ (posedge mi_clk) if(hard_reset) ecfg_rx_reg[4:0] <= 5'b0; else if (ecfg_rx_write) ecfg_rx_reg[4:0] <= mi_din[4:0]; assign ecfg_rx_enable = ecfg_rx_reg[0]; assign ecfg_rx_mmu_enable = ecfg_rx_reg[1]; assign ecfg_rx_gpio_enable = ecfg_rx_reg[3:2]==2'b01; //########################### //# CCLK/LCLK (PLL) //########################### always @ (posedge mi_clk) if(hard_reset) ecfg_clk_reg[15:0] <= 'd0; else if (ecfg_clk_write) ecfg_clk_reg[15:0] <= mi_din[15:0]; assign ecfg_clk_settings[15:0] = ecfg_clk_reg[15:0]; //assign ecfg_cclk_en = ~(ecfg_clk_reg[3:0]==4'b0000); //assign ecfg_cclk_div[3:0] = ecfg_clk_reg[3:0]; //assign ecfg_cclk_pllcfg[3:0] = ecfg_clk_reg[7:4]; //assign ecfg_cclk_bypass = ecfg_clk_reg[8]; //########################### //# COREID //########################### always @ (posedge mi_clk) if(hard_reset) ecfg_coreid_reg[11:0] <= DEFAULT_COREID; else if (ecfg_coreid_write) ecfg_coreid_reg[11:0] <= mi_din[11:0]; assign ecfg_coreid[11:0] = ecfg_coreid_reg[11:0]; //########################### //# VERSION //########################### always @ (posedge mi_clk) if(hard_reset) ecfg_version_reg[15:0] <= DEFAULT_VERSION; else if (ecfg_version_write) ecfg_version_reg[15:0] <= mi_din[15:0]; //########################### //# DATAIN //########################### always @ (posedge mi_clk) ecfg_datain_reg[10:0] <= {ecfg_rx_datain[1:0], ecfg_rx_datain[8:0]}; //########################### //# DATAOUT //########################### always @ (posedge mi_clk) if(hard_reset) ecfg_dataout_reg[10:0] <= 11'd0; else if (ecfg_dataout_write) ecfg_dataout_reg[10:0] <= mi_din[10:0]; assign ecfg_dataout[10:0] = ecfg_dataout_reg[10:0]; //###########################1 //# DEBUG //########################### assign ecfg_debug_vector[31:0]= {embox_not_empty, ecfg_rx_debug[14:3], ecfg_tx_debug[14:3], ecfg_rx_debug[2:0], ecfg_tx_debug[2:0], embox_full }; always @ (posedge mi_clk) if(hard_reset) ecfg_debug_reg[7:0] <= 8'd0; else ecfg_debug_reg[7:0] <=ecfg_debug_reg[7:0] | ecfg_debug_vector[7:0]; //############################### //# DATA READBACK MUX //############################### //Pipelineing readback always @ (posedge mi_clk) if(ecfg_read) case(mi_addr[RFAW+1:2]) `ELRESET: mi_dout[31:0] <= {31'b0, ecfg_reset_reg}; `ELTX: mi_dout[31:0] <= {23'b0, ecfg_tx_reg[8:0]}; `ELRX: mi_dout[31:0] <= {27'b0, ecfg_rx_reg[4:0]}; `ELCLK: mi_dout[31:0] <= {24'b0, ecfg_clk_reg[7:0]}; `ELCOREID: mi_dout[31:0] <= {20'b0, ecfg_coreid_reg[11:0]}; `ELVERSION: mi_dout[31:0] <= {16'b0, ecfg_version_reg[15:0]}; `ELDATAIN: mi_dout[31:0] <= {21'b0, ecfg_datain_reg[10:0]}; `ELDATAOUT: mi_dout[31:0] <= {21'b0, ecfg_dataout_reg[10:0]}; `ELDEBUG: mi_dout[31:0] <= {ecfg_debug_vector[31:8],ecfg_debug_reg[7:0]}; default: mi_dout[31:0] <= 32'd0; endcase endmodule // ecfg /* Copyright (C) 2013 Adapteva, Inc. Contributed by Andreas Olofsson This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.This program is distributed in the hope that it will be useful,but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program (see the file COPYING). If not, see . */