mirror of
https://github.com/aolofsson/oh.git
synced 2025-01-17 20:02:53 +08:00
f141a0e320
-Adding enable signal to clock out. Definitely right decision to keep separate bit from the divider field. -Fixed settings for to fit new register field -XILINX version is still broken!!
298 lines
10 KiB
Verilog
298 lines
10 KiB
Verilog
/*###########################################################################
|
|
# Function: High speed clock generator elink module
|
|
#
|
|
# cclk_p/n - Epiphany Core Clock, Differential, must be connected
|
|
# directly to IO pins.
|
|
#
|
|
# tx_lclk_par - Parallel data clock, at bit rate / 8 for etx
|
|
#
|
|
# tx_lclk - Serial DDR data clock, at bit rate / 2 for etx
|
|
#
|
|
# tx_lclk_out - DDR "Clock" clock, to generate tx_lclk_p/n output
|
|
# At bit rate / 2, 90deg shifted from tx_lclk
|
|
#
|
|
# Notes: Uses Xilinx macros throughout
|
|
#
|
|
############################################################################
|
|
*/
|
|
|
|
`timescale 1ns/1ps
|
|
|
|
module eclocks (/*AUTOARG*/
|
|
// Outputs
|
|
cclk_p, cclk_n, tx_lclk, tx_lclk_out, tx_lclk_par,
|
|
// Inputs
|
|
clkin, hard_reset, ecfg_clk_settings, clkbypass
|
|
);
|
|
|
|
// Parameters must be set as follows:
|
|
// PFD input frequency = 1/CLKIN1_PERIOD / DIVCLK_DIVIDE (10-450MHz)
|
|
// VCO frequency = PFD input frequency * CLKFBOUT_MULT (800-1600MHz)
|
|
// Output frequency = VCO frequency / CLKOUTn_DIVIDE
|
|
|
|
parameter CLKIN_PERIOD = 10.000; // ns -> 100MHz
|
|
parameter CLKIN_DIVIDE = 1;
|
|
parameter VCO_MULT = 12; // VCO = 1200MHz
|
|
parameter CCLK_DIVIDE = 2; // CCLK = 600MHz
|
|
parameter LCLK_DIVIDE = 4; // LCLK = 300MHz (600MB/s eLink)
|
|
parameter FEATURE_CCLK_DIV = 1'b1;
|
|
parameter IOSTD_ELINK = "LVDS_25";
|
|
parameter INC_PLL = 1;
|
|
|
|
//Input clock, reset, config interface
|
|
input clkin; // primary input clock
|
|
input hard_reset; //
|
|
input [15:0] ecfg_clk_settings; // clock settings
|
|
input [2:0] clkbypass; // for bypassing PLL
|
|
|
|
|
|
//Output Clocks
|
|
output cclk_p, cclk_n; // high speed Epiphany clock (up to 1GHz)
|
|
output tx_lclk; // elink tx serdes clock
|
|
output tx_lclk_out; // center aligned output clock for elink tx
|
|
output tx_lclk_par; // lclk/8 slow clock for tx parallel logic
|
|
|
|
// Wires
|
|
wire cclk_en;
|
|
wire lclk_en;
|
|
|
|
|
|
//Register decoding
|
|
assign cclk_en=ecfg_clk_settings[0];
|
|
assign lclk_en=ecfg_clk_settings[1];
|
|
|
|
`ifdef TARGET_XILINX
|
|
wire clkfb;
|
|
wire pll_cclk; //full speed cclk
|
|
wire pll_lclk; //full speed lclk etx
|
|
wire pll_lclk_out; //full speed lclk for pin for etx
|
|
wire pll_lclk_par; //low speed lclk for etx
|
|
wire pll_cclk_div; //low speed cclk
|
|
wire pll_cclk_standby; //standby clock
|
|
wire cclk;
|
|
wire cclk_base;
|
|
wire cclk_div;
|
|
|
|
// PLL Primitive
|
|
generate
|
|
for (i=0; i< INC_PLL; i=i+1) begin : PLL
|
|
PLLE2_BASE
|
|
#(
|
|
.BANDWIDTH("OPTIMIZED"), // OPTIMIZED, HIGH, LOW
|
|
.CLKFBOUT_MULT(VCO_MULT), // Multiply value for all CLKOUT, (2-64)
|
|
.CLKFBOUT_PHASE(0.0), // Phase offset in degrees of CLKFB, (-360.000-360.000).
|
|
.CLKIN1_PERIOD(CLKIN_PERIOD),// Input clock period in ns to ps resolution (i.e. 33.333 is 30 MHz).
|
|
// CLKOUT0_DIVIDE - CLKOUT5_DIVIDE: Divide amount for each CLKOUT (1-128)
|
|
.CLKOUT0_DIVIDE(CCLK_DIVIDE), //full speed
|
|
.CLKOUT1_DIVIDE(LCLK_DIVIDE), //full speed
|
|
.CLKOUT2_DIVIDE(LCLK_DIVIDE), //full speed
|
|
.CLKOUT3_DIVIDE(LCLK_DIVIDE * 4), //low speed
|
|
.CLKOUT4_DIVIDE(CCLK_DIVIDE * 4), //low speed
|
|
.CLKOUT5_DIVIDE(128), //veeery low speed
|
|
// CLKOUT0_DUTY_CYCLE - CLKOUT5_DUTY_CYCLE: Duty cycle for each CLKOUT (0.001-0.999).
|
|
.CLKOUT0_DUTY_CYCLE(0.5),
|
|
.CLKOUT1_DUTY_CYCLE(0.5),
|
|
.CLKOUT2_DUTY_CYCLE(0.5),
|
|
.CLKOUT3_DUTY_CYCLE(0.5),
|
|
.CLKOUT4_DUTY_CYCLE(0.5),
|
|
.CLKOUT5_DUTY_CYCLE(0.5),
|
|
// CLKOUT0_PHASE - CLKOUT5_PHASE: Phase offset for each CLKOUT (-360.000-360.000).
|
|
.CLKOUT0_PHASE(0.0),
|
|
.CLKOUT1_PHASE(0.0),
|
|
.CLKOUT2_PHASE(90.0),
|
|
.CLKOUT3_PHASE(0.0),
|
|
.CLKOUT4_PHASE(0.0),
|
|
.CLKOUT5_PHASE(0.0),
|
|
.DIVCLK_DIVIDE(CLKIN_DIVIDE),// Master division value, (1-56)
|
|
.REF_JITTER1(0.01), // Reference input jitter (0.000-0.999).
|
|
.STARTUP_WAIT("FALSE") // Delay DONE until PLL Locks, ("TRUE"/"FALSE")
|
|
) eclk_pll
|
|
(
|
|
// Clock Outputs: 1-bit (each) output: User configurable clock outputs
|
|
.CLKOUT0(pll_cclk), //full speed cclk
|
|
.CLKOUT1(pll_lclk), //full speed lclk etx
|
|
.CLKOUT2(pll_lclk_out), //full speed lclk for pin for etx
|
|
.CLKOUT3(pll_lclk_par), //low speed lclk for etx
|
|
.CLKOUT4(pll_cclk_div), //low speed cclk
|
|
.CLKOUT5(pll_cclk_standby), //standby clock
|
|
.CLKFBOUT(clkfb), //feedback clock output
|
|
.LOCKED(), //lock signal
|
|
.CLKIN1(clkin), //main input clock
|
|
.PWRDWN(1'b0), //pll power down
|
|
.RST(1'b0), //reset
|
|
.CLKFBIN(clkfb) //feedback clock input
|
|
);
|
|
|
|
|
|
//TODO!! Redesign this all together!!!
|
|
|
|
// Output buffering
|
|
BUFG cclk_buf (.O (cclk_base), .I (pll_cclk));
|
|
BUFG cclk_div_buf (.O (cclk_div), .I (pll_cclk_div));
|
|
BUFG lclk_buf (.O (tx_lclk), .I (pll_lclk));
|
|
BUFG lclk_out_buf (.O (tx_lclk_out), .I (pll_lclk_out));
|
|
BUFG lclk_par_buf (.O (tx_lclk_par), .I (pll_lclk_par));
|
|
|
|
generate
|
|
if( FEATURE_CCLK_DIV ) begin : gen_cclk_div
|
|
|
|
// Create adjustable (but fast) CCLK
|
|
wire rxi_cclk_out;
|
|
reg [8:1] cclk_pattern;
|
|
reg [4:0] clk_div_sync;
|
|
reg enb_sync;
|
|
|
|
always @ (posedge cclk_div) begin // Might need x-clock TIG here
|
|
|
|
clk_div_sync <= {cclk_en,ecfg_clk_settings[7:4]};
|
|
|
|
|
|
if(enb_sync)
|
|
case(clk_div_sync)
|
|
4'h0: cclk_pattern <= 8'd0; // Clock OFF
|
|
4'h0: cclk_pattern <= 8'b10101010; // Divide by 1
|
|
4'h6: cclk_pattern <= 8'b11001100; // Divide by 2
|
|
4'h5: cclk_pattern <= 8'b11110000; // Divide by 4
|
|
default: cclk_pattern <= {8{~cclk_pattern[1]}}; // /8
|
|
endcase
|
|
else
|
|
cclk_pattern <= 8'b00000000;
|
|
end // always @ (posedge cclk_div)
|
|
|
|
|
|
//CCLK CLOCK DIVIDER
|
|
OSERDESE2
|
|
#(
|
|
.DATA_RATE_OQ("DDR"), // DDR, SDR
|
|
.DATA_RATE_TQ("SDR"), // DDR, BUF, SDR
|
|
.DATA_WIDTH(8), // Parallel data width (2-8,10,14)
|
|
.INIT_OQ(1'b0), // Initial value of OQ output (1'b0,1'b1)
|
|
.INIT_TQ(1'b0), // Initial value of TQ output (1'b0,1'b1)
|
|
.SERDES_MODE("MASTER"), // MASTER, SLAVE
|
|
.SRVAL_OQ(1'b0), // OQ output value when SR is used (1'b0,1'b1)
|
|
.SRVAL_TQ(1'b0), // TQ output value when SR is used (1'b0,1'b1)
|
|
.TBYTE_CTL("FALSE"), // Enable tristate byte operation (FALSE, TRUE)
|
|
.TBYTE_SRC("FALSE"), // Tristate byte source (FALSE, TRUE)
|
|
.TRISTATE_WIDTH(1) // 3-state converter width (1,4)
|
|
) OSERDESE2_inst
|
|
(
|
|
.OFB(), // Feedback path for data
|
|
.OQ(cclk), // Data path output
|
|
.SHIFTOUT1(),
|
|
.SHIFTOUT2(),
|
|
.TBYTEOUT(), // Byte group tristate
|
|
.TFB(), // 1-bit output: 3-state control
|
|
.TQ(), // 3-state control
|
|
.CLK(cclk_base), // High speed clock
|
|
.CLKDIV(cclk_div), // Divided clock
|
|
.D1(cclk_pattern[1]), // Parallel data inputs
|
|
.D2(cclk_pattern[2]),
|
|
.D3(cclk_pattern[3]),
|
|
.D4(cclk_pattern[4]),
|
|
.D5(cclk_pattern[5]),
|
|
.D6(cclk_pattern[6]),
|
|
.D7(cclk_pattern[7]),
|
|
.D8(cclk_pattern[8]),
|
|
.OCE(1'b1), // Output data clock enable TODO: gating?
|
|
.RST(hard_reset), // Reset
|
|
.SHIFTIN1(1'b0), // Data input expansion (1-bit each)
|
|
.SHIFTIN2(1'b0),
|
|
.T1(1'b0), // Parallel 3-state inputs
|
|
.T2(1'b0),
|
|
.T3(1'b0),
|
|
.T4(1'b0),
|
|
.TBYTEIN(1'b0), // Byte group tristate
|
|
.TCE(1'b0) // 3-state clock enable
|
|
);
|
|
|
|
end else
|
|
begin : gen_fixed_cclk // Non-dividable CCLK
|
|
reg enb_sync;
|
|
|
|
always @ (posedge cclk_div)
|
|
enb_sync <= ~(ecfg_clk_settings[3:0]==4'b0000);
|
|
|
|
// The following does not result in timing failures,
|
|
// but doesn't seem glitch-safe
|
|
assign cclk = cclk_base & enb_sync;
|
|
end
|
|
endgenerate
|
|
|
|
//Clock output
|
|
OBUFDS #(.IOSTANDARD (IOSTD_ELINK)) obufds_cclk_inst (.O (cclk_p), .OB (cclk_n), .I (cclk));
|
|
|
|
end // block: PLL
|
|
endgenerate
|
|
|
|
`elsif TARGET_CLEAN
|
|
wire cclk;
|
|
wire lclk_par;
|
|
wire lclk;
|
|
wire lclk_out;
|
|
|
|
|
|
clock_divider cclk_divider(
|
|
// Outputs
|
|
.clkout (cclk),
|
|
.clkout90 (),
|
|
// Inputs
|
|
.clkin (clkin),
|
|
.reset (hard_reset),
|
|
.divcfg (ecfg_clk_settings[7:4])
|
|
);
|
|
|
|
|
|
assign cclk_p = cclk & cclk_en ;
|
|
assign cclk_n = ~cclk_p;
|
|
|
|
clock_divider lclk_divider(
|
|
// Outputs
|
|
.clkout (lclk),
|
|
.clkout90 (lclk_out),
|
|
// Inputs
|
|
.clkin (clkin),
|
|
.reset (hard_reset),
|
|
.divcfg (ecfg_clk_settings[11:8])
|
|
);
|
|
|
|
clock_divider lclk_par_divider(
|
|
// Outputs
|
|
.clkout (lclk_par),
|
|
.clkout90 (),
|
|
// Inputs
|
|
.clkin (clkin),
|
|
.reset (hard_reset),
|
|
.divcfg (ecfg_clk_settings[11:8] + 4'd2)
|
|
);
|
|
|
|
|
|
//Clock enables
|
|
assign tx_lclk_par = lclk_par & lclk_en;
|
|
assign tx_lclk = lclk & lclk_en;
|
|
assign tx_lclk_out = lclk_out & lclk_en;
|
|
|
|
`endif
|
|
|
|
|
|
|
|
endmodule // eclocks
|
|
// Local Variables:
|
|
// verilog-library-directories:("." "../../common/hdl")
|
|
// End:
|
|
|
|
|
|
/*
|
|
Copyright (C) 2014 Adapteva, Inc.
|
|
Contributed by Fred Huettig <fred@adapteva.com>
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.This program is distributed in the hope
|
|
that it will be useful,but WITHOUT ANY WARRANTY without even the implied
|
|
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details. You should have received a copy
|
|
of the GNU General Public License along with this program (see the file
|
|
COPYING). If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|