1
0
mirror of https://github.com/aolofsson/oh.git synced 2025-01-17 20:02:53 +08:00
oh/elink/hdl/etx_protocol.v
Andreas Olofsson 6b108f5e1f Adding reset to synchronizer
(cause there may not be a clock...)
2015-04-27 16:03:57 -04:00

256 lines
8.2 KiB
Verilog

//########################################################################
//# ELINK TX Protocol block
//########################################################################
//#
//# The etx_protocol block implements a transmitter for communicating with
//# the Epiphany receiver per the documentation seen below.
//#
//# The output transaction has an option of the bursting where data of
//# the new transaction is sent without the address. In such a case the
//# address of the transaction will be determined in the receiver according
//# to the address of the previous transaction.
//#
//# ___ ___ ___ ___ ___ ___
//# lclk _| |___| |___| |___| |___| |___| |_
//#
//# -------------------------------
//# frame ______/
//# --- --- --- --- ---
//# data XXXXXXX 0 X 1 X 2 X 3 X 4 X .....
//# --- --- --- --- ---
//#
//# Transaction structure:
//# -------------------------
//# byte0 -> 00000000
//# byte1 -> ctrlmode[3:0],dstaddr[31:28]
//# byte2 -> dstaddr[27:20]
//# byte3 -> dstaddr[19:12]
//# byte4 -> dstaddr[11:4]
//# byte5 -> dstaddr[3:0],datamode[1:0],write,access
//# byte6 -> data[31:24] (or srcaddr[31:24] if read transaction)
//# byte7 -> data[23:16] (or srcaddr[23:16] if read transaction)
//# byte8 -> data[15:8] (or srcaddr[15:8] if read transaction)
//# *byte9 -> data[7:0] (or srcaddr[7:0] if read transaction)
//# byte10 -> data[63:56]
//# byte11 -> data[55:48]
//# byte12 -> data[47:40]
//# byte13 -> data[39:32]
//# **byte14 -> data[31:24]
//# ...
//# ...
//# ...
//#
//# * byte9 is the last byte of 32 bit write or read transaction
//#
//# ** if 64 bit write transaction, data of byte14 is the first data byte of
//# bursting transaction
//#
//# -- The data is transmitted MSB first but in 32bits resolution. If we want
//# to transmit 64 bits it will be [31:0] (msb first) and then [63:32]
//# (msb first)
//#
//# Wait indication to the transmitter (from Epiphany chip receiver):
//#
//# When one of the secondary fifos becomes full we send wait indication
//# to the transmitter.
//# There is some uncertainty regarding how long it will take for the wait
//# control to stop the transmitter (we have synchronization on the way,
//# which may cause +/-1 cycle of uncertainty).
//# Our main fifo on the input port of the receiver is robust enough
//# (has enough entries) to receive all of the transactions sent during the
//# time of "wait traveling" without loosing any information.
//# But the uncertainty mentioned above forces us to start from empty fifo
//# every time after wait indication is raised in order to ensure that
//# the number of available entries won't be reduced.
//#
//#####################################################################
module etx_protocol (/*AUTOARG*/
// Outputs
etx_rd_wait, etx_wr_wait, etx_wait, etx_io_wait, tx_frame_par,
tx_data_par,
// Inputs
etx_access, etx_packet, ecfg_tx_tp_enable, ecfg_dataout,
ecfg_tx_enable, ecfg_tx_gpio_enable, ecfg_access, ecfg_packet,
reset, tx_lclk_div4, tx_rd_wait, tx_wr_wait
);
parameter PW = 104;
parameter AW = 32;
parameter DW = 32;
//Bus side
input etx_access;
input [PW-1:0] etx_packet;
output etx_rd_wait;
output etx_wr_wait;
output etx_wait; //for pipeline
output etx_io_wait; //for arbiter
//Enables transmit test pattern
input ecfg_tx_tp_enable;
input [8:0] ecfg_dataout;
input ecfg_tx_enable;
input ecfg_tx_gpio_enable;
//Test Insertion
input ecfg_access;
input [PW-1:0] ecfg_packet;
// IO side (8 eLink bytes at a time)
input reset;
input tx_lclk_div4;// Parallel-rate clock from eClock block
output [7:0] tx_frame_par;
output [63:0] tx_data_par;
input tx_rd_wait; // The wait signals are passed through
input tx_wr_wait; // to the emesh interfaces
//############
//# Local regs & wires
//############
reg etx_sample; //hold for second cycle
reg [7:0] tx_frame_par;
reg [127:0] tx_data_reg; //sample transaction on one clock cycle
reg rd_wait_sync;
reg wr_wait_sync;
wire etx_write;
wire [1:0] etx_datamode;
wire [3:0] etx_ctrlmode;
wire [AW-1:0] etx_dstaddr;
wire [DW-1:0] etx_data;
wire [AW-1:0] etx_srcaddr;
wire access_mux;
wire ecfg_access_sync;
wire [PW-1:0] packet_mux;
//Synchronize access signal
synchronizer #(.DW(1)) synchronizer(.out (ecfg_access_sync),
.in (ecfg_access),
.clk (tx_lclk_div4),
.reset (reset)
);
assign access_mux = ecfg_access_sync | etx_access;
assign packet_mux[PW-1:0] = ecfg_access_sync ? ecfg_packet[PW-1:0] :
etx_packet[PW-1:0];
//packet to emesh bundle
packet2emesh p2m (
// Outputs
.access_out (),
.write_out (etx_write),
.datamode_out (etx_datamode[1:0]),
.ctrlmode_out (etx_ctrlmode[3:0]),
.dstaddr_out (etx_dstaddr[31:0]),
.data_out (etx_data[31:0]),
.srcaddr_out (etx_srcaddr[31:0]),
// Inputs
.packet_in (packet_mux[PW-1:0]));
// TODO: Bursts
always @( posedge tx_lclk_div4 or posedge reset )
begin
if(reset)
begin
etx_sample <= 1'b1;
tx_frame_par[7:0] <= 8'd0;
tx_data_reg[127:0] <= 'd0;
end
else
begin
if( access_mux & etx_sample ) //first cycle
begin
etx_sample <= 1'b0;
tx_frame_par[7:0] <= 8'h3F;
tx_data_reg[127:0] <= {etx_data[31:0],
etx_srcaddr[31:0],
8'd0, // Not used
8'd0, //not used
~etx_write, 7'd0, // B0-TODO: For bursts, add the inc bit
etx_ctrlmode[3:0], etx_dstaddr[31:28], // B1
etx_dstaddr[27:4], // B2, B3, B4
etx_dstaddr[3:0], etx_datamode[1:0], etx_write, etx_access // B5
};
end
else if(~etx_sample ) //second cycle (1)
begin
etx_sample <= 1'b1;
tx_frame_par[7:0] <= 8'hFF;
end
else
begin
etx_sample <= 1'b1;
tx_frame_par[7:0] <= 'd0;
tx_data_reg[127:0] <= 'd0;
end
end // else: !if(reset)
end // always @ ( posedge txlclk_p or posedge reset )
//After first sample, etx_sample-->0 use as indicator to sample in data.
assign tx_data_par[63:0] = ~etx_sample ? tx_data_reg[63:0] : //first cycle
tx_data_reg[127:64];//all others, 0 or upper
//#############################
//# Wait signals (async)
//#############################
synchronizer #(.DW(1)) rd_sync (// Outputs
.out (etx_rd_wait),
// Inputs
.in (tx_rd_wait),
.clk (tx_lclk_div4),
.reset (reset)
);
synchronizer #(.DW(1)) wr_sync (// Outputs
.out (etx_wr_wait),
// Inputs
.in (tx_wr_wait),
.clk (tx_lclk_div4),
.reset (reset)
);
//#############################
//# Pipeline stall
//#############################
assign etx_io_wait = ~etx_sample;
assign etx_wait = etx_io_wait |
etx_rd_wait |
etx_wr_wait;
endmodule // etx_protocol
// Local Variables:
// verilog-library-directories:("." "../../common/hdl")
// End:
/*
File: etx_protocol.v
This file is part of the Parallella Project.
Copyright (C) 2014 Adapteva, Inc.
Contributed by Fred Huettig <fred@adapteva.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program (see the file COPYING). If not, see
<http://www.gnu.org/licenses/>.
*/